
PSYCHOLOGY AND COGNITIVE SCIENCES
PUBLISHERS

ISSN 2380-727X

Open Journal

A Case Study Exploring Pre-Service Teachers’ Programming
Difficulties and Strategies when Learning Programming
Languages

Fatih Gok, MS; Kyungbin Kwon, PhD*

Department of Instructional Systems Technology, Indiana University, 201 N. Rose Avenue, Bloomington, IN 47405, USA

*Corresponding author
Kyungbin Kwon, PhD
Assistant Professor, Department of Instructional Systems Technology, Indiana University, 201 N. Rose Avenue, Bloomington, IN 47405, USA; Tel. 812-856-8460;
Fax. 812-856-8239; E-mail: kwonkyu@indiana.edu

Article information
Received: February 20th, 2020; Revised: March 28th, 2020; Accepted: April 1st, 2020; Published: April 7th, 2020

Cite this article
Gok F, Kwon K. Exploring pre-service teachers’ programming difficulties and strategies when learning programming languages. Psychol Cogn Sci Open J. 2020; 6(1):
1-6. doi: 10.17140/PCSOJ-6-152

Case Study

Case Study | Volume 6 | Number 1 | 1

 Copyright 2020 by Kwon K. This is an open-access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which allows
to copy, redistribute, remix, transform, and reproduce in any medium or format, even commercially, provided the original work is properly cited.
cc

INTRODUCTION

Computational thinking (CT) is defined as the ability to formu-
late a solution to a problem by breaking the problem down so

that the solution can be automated.1 Since Wing1 highlighted the
importance of CT for young people and suggested the benefits
from using it in diverse contexts, there has been a tendency toward
teaching and learning CT concepts (e.g., abstraction, decomposi-
tion, and debugging) in K-12.2 This training of the young gener-
ation in the context of CT has been supported due to the need
for people with CT skills in the diverse contexts of the modern
economy in the United States (US).3,4

	 In recent years, research on theoretical and practical com-

puter science (CS) education in K-12 has focused on defining CT
concepts and providing a framework to integrate those concepts
into instruction.5,6 Gal-Ezer and Stephenson7 suggested that teach-
ers should have a sufficient conceptual understanding of the CT
concepts. With such goal in mind, National Science Foundation
(NSF) trained over 10,000 computer science teachers which was a
significant effort made in the last decade.5 In addition, researchers
have also recognized the importance of spreading such training
efforts of CT concepts on the development of pre-service teach-
ers.8-10

	 Previous studies showed that there are some challenges
faced by students of various age groups in learning CT concepts.
For example, Basu et al11 studied the computational and science

ABSTRACT
Understanding the importance of training young people, this study sought to explore the early experience of pre-service teachers
in their computational practices in terms of the difficulties they faced and the strategies they used while learning how to program.
Based on convenience sampling, four participants were recruited from an undergraduate course focusing on computer science
education in K-12. The literature on novice programmers’ difficulties and their strategies was used to establish the conceptual
background for this study. We collected four semi-structured interviews with pre-service teachers, a total of five hour-long class-
room observations, and 19 class activities (archival data). After conducting a content analysis, findings showed four categories in
which pre-service teachers face difficulties: (a) understanding the computational concepts (semantic); (b) using the concepts in-
appropriately (syntax); (c) developing a program (algorithmic thinking), and (d) identifying problems (debugging). We also found
five categories in which pre-service teachers overcome their difficulties: planning, using resources, seeking support, guessing
and checking, and looking for visual assistance. This study emphasized that pre-service teachers encounter several difficulties in
learning computational concepts through programming languages, which should be considered in pre-service teacher education.

Keywords
Computational Thinking; Computer science education; Pre-service teachers; Problem solving strategies.

http://dx.doi.org/10.17140/PCSOJ-6-152

Kwon K et al

Psychol Cogn Sci Open J. 2020; 6(1): 1-6. doi: 10.17140/PCSOJ-6-152

domain-related challenges of 15 sixth grade students. The author’s
identified six categories of difficulties faced by sixth graders when
learning programming. These difficulties included (a) understand-
ing basic programming concepts (semantic difficulties); (b) using
programming concepts, such as manipulating various kinds of
loops; (c) developing a solution to a given computational prob-
lem step-by-step (algorithmic thinking); (d) adapting a part of an
existing code to one’s own code; (e) breaking the task into smaller
tasks and handling these smaller tasks independently from the rest
of the code; (f) detecting causes (also known as bugs) that keep the
code from working properly.

	 Similarly, researchers identified some challenges for stu-
dents in different age groups. For example, Saeli et al12 identified
various difficulty high school students encountered while learning
to program, including difficulty to instruct a computer to carry
out a solution, faulty assumption that a computer can understand
their solutions, and tendency to have a limited point of view, which
resulted in failure to find a suitable solution. The author also found
that creating instructions for a computer to solve a given problem
was a challenging task for high school students.12 This challenge
was also confirmed in a different study with novice programmers
that the participants had difficulties while creating a computer pro-
gram even though they a clear understanding of concepts (seman-
tic) and an understanding of how to use the concepts (syntax).13
Supporting the same idea, Lahtinen, Ala-Mutka, and Järvinen,14 in
an analysis of a survey of 559 university students and 34 teachers,
indicated that students had difficulties with program construction,
such as developing a program to solve a given task or dealing with
bugs.

	 On the other hand, the literature on computer science
education indicated that there were several methods that students
used to overcome their difficulties in learning programming. For
example, Lahtinen et al14 identified several sources that students
from different universities use to receive help while learning pro-
gramming including: a programming course book, lecture notes,
exercise questions and examples, example programs, pictures of
programming structures, and interactive visualizations. The au-
thors found that students perceived example programs as the
most helpful for solving problems. In addition, a number of stud-
ies emphasized that visual elements help students develop a clear
understanding of programs.15,16 Similarly, several research studies
indicated that providing students with a scaffolding from peers or
instructors could be helpful for them to overcome their difficul-
ties.11,17

	 Addressing students’ difficulties from teachers’ perspec-
tives, several teaching techniques that help students overcome the
difficulties they face while learning programming.12 For example,
algorithmic thinking defined as “a series of ordered steps”17 to fol-
low while solving a problem and learning a simple programming
language could help students overcome their programming diffi-
culties.

METHOD

The purpose of this qualitative study was to explore pre-service

teachers’ difficulties and strategies while learning programming
languages. A “basic” qualitative research design18 was used to un-
derstand how pre-service teachers interpreted their experiences
with programming languages. Two research questions were posed
to guide this study:

• What difficulties do pre-service teachers face when learning
 computational concepts through programming?
• What strategies do pre-service teachers use to overcome the
 difficulties they face while learning computational concepts
 through programming?

	 To answer the two research questions, we collected data
from interviews, classroom observations, and archival data. Using
a content analysis, we analyzed the data.
 	
Participants

This study took place in a computer science education class at a
large mid-western state university. Four participants were select-
ed through convenience sampling.18 Between February 15, 2017
and March 22, 2017, we collected five hours of observations, four
semi-structured interviews, and archival data.

	 All four participants were female elementary education
majors with a concentration in science and the computer educa-
tion license (CEL) program. They were in their junior year and
completed two computer education courses in the CEL program
before taking the current introductory course to programming lan-
guages.

	 In this study, pre-service teachers learned two program-
ming languages: Scratch (block-based programming) and Python
(text-based programming). Scratch, with dragging and dropping
features, allowed students to easily program without prior knowl-
edge19 and learn CT concepts without making syntax errors.5

Observations

A total of five hour-long observations took place at different class
times. During the observation process, 12 pre-service teachers were
observed while engaged in CT problem-solving practices, which
involved solving problems, such as “Write a function that takes two
numbers and returns True if the first number is bigger than the second one,”
within a certain time limit. The researcher took field notes during
pre-service teachers’ CT problem-solving practices. For example,
pre-service teachers were raising questions related to the meaning
of concepts. One of them asked the instructor: “why do you use two
equal signs instead of one equal sign here [in If condition]?” The researcher
also observed that pre-service teachers worked with peers collabo-
ratively to solve the given problems.

Interviews

Semi-structured interviews were conducted with four pre-service
teachers from the classroom of observation. An individual email
was sent to each of twelve participant’s in the computer science ed-
ucation class, of whom four participants volunteered to participate

Case Study | Volume 6 | Number 1 |2

http://dx.doi.org/10.17140/PCSOJ-6-152

Kwon K et al

Psychol Cogn Sci Open J. 2020; 6(1): 1-6. doi: 10.17140/PCSOJ-6-152

in the study. The interview questions focused on the participants’
experiences and their thought process of solving a given problem.
To ensure the clarity of the interview questions, interview ques-
tions were sent to each participant in advance. Each interview took
roughly 30-minutes. With permission from the participants, three
interviews were audio-recorded and transcribed for data analysis.

Archival Data

Through class activities, nineteen worksheets were collected from
students. These class activities reflected students’ initial thinking
processes as they worked in pairs or small groups to develop their
solutions on their worksheets before attempting to solve a given
problem using either Scratch or Python programming platforms.
In this process, the instructor asked students to think about how
they would solve the given problem, to develop their thinking
processes step-by-step, and to write down their solutions on their
worksheets.

Data Analysis

After transcribing the interviews, we sent the interview data to the
participants for member checking to ensure the validity of the data.
Two of the participants responded that their transcribed data were
accurate and that they did not want to change anything. To analyze
these transcripts, researchers used a content analysis approach.20

Two coders used the participants’ own words to code during the
initial analysis of the interview data. After the initial coding pro-
cess, researchers reached out to the sub-categories. Finally, they
identified the categories for each sub-category.

	 In addition, researchers analyzed observation data and
archival data for triangulation purposes to ensure the validity of
the results.20 Researchers followed the same procedure to analyze
observational data as in the interview data analysis. To analyze the
archival data, researchers looked at how CT concepts were used in
class activities. The results of the archival data analysis and obser-
vation analysis supported the categories identified in the interview
data analysis. There were no emerging categories that we identified
from the analysis of observation data and archival data.

RESULTS

After the data analysis process, two themes including programming
difficulties and strategies had been identified. The first theme, dif-
ficulties, involved four categories that pre-service teachers expe-
rienced while learning CT concepts through Scratch and Python
programming languages. The second theme involved five catego-
ries that pre-service teachers used to overcome their difficulties in
the learning process.

Difficulties

In answering to the first research question concerning the difficul-
ties pre-service teachers faced while learning how to solve a given
problem in Scratch and Python programming, researchers identi-
fied four categories of difficulties as follows:

Understanding the computational concepts (semantic): The par-
ticipants in this study indicated a lack of understanding the com-
putational concepts. The difficulties they faced were mainly related
to the meaning of concepts and how to apply them. For example,
one participant complained about the difficulties of using a com-
putational concept appropriately and she stated that she developed
an excessively long code but failed to make it shorter by using the
concept loop (repetition). In the archival data analysis, the same
failure of pre-service teachers where they lacked understanding
of the concept loop was found. For instance, the instructor asked
them to develop an algorithm for when the green flag in Scratch
was clicked; the timer will count backward from 5 to 0 one by one.
More than half of the students failed to say “repeat 5 times” to
count down.

	 Similarly, one pre-service teacher was having difficulties
in understanding how to use nested conditions which was another
CT concept where students needed to use a conditional statement
inside of another conditional statement. The archival data analysis
also captured the same instance of difficulty. Three out of five
groups did not understand the use of nested conditions.

	 Another example related to semantic difficulties was that
students failed to understand why they were using particular con-
cepts. The following statement captured the difficulties that stu-
dents were experiencing:

	 “I just want to know that there is a deeper understanding of why
you put two equal signs or why I, like certain things are in quotation marks
and some aren’t.”

Using the concepts appropriately (syntax): The analysis of inter-
view transcripts showed that pre-service teachers sometimes had
syntax errors in their code. They gave two main reasons for why
they were having syntax related difficulties. First, they sometimes
did not know the appropriate format for using concepts. Second,
even if they knew how to use a certain concept, they failed to ex-
press it correctly. For example, one student explained her struggle
with using a colon in Python programming:

	 “I can write out my ideas if there’s not... like I forget one colon and
it like messes up the whole program because if you don’t have a colon then it’s
not going to run properly....”

	 In many cases, the students’ failures in Python program-
ming were related to syntax errors such as a missing comma or
parenthesis.

Identifying problems (debugging): Another difficulty that pre-ser-
vice teachers faced was to identify and fix the problems that caused
errors. For example, one student stated that she was having diffi-
culty figuring out the problems in her code. One described that:

	 “I made another game where… I had four fish that were falling and
two fish kept getting stuck at the bottom of the screen... I have no idea why
those two are just getting stuck...”

3Case Study | Volume 6 | Number 1 |

http://dx.doi.org/10.17140/PCSOJ-6-152

Kwon K et al

Psychol Cogn Sci Open J. 2020; 6(1): 1-6. doi: 10.17140/PCSOJ-6-152

	 They often did not figure out the error messages that the
python editing tool provided. The observation data suggested that
it happened when pre-service teachers could not pinpoint the area
of or reason for the error and examined the entire syntax instead.

Developing a program: Even though students knew what concepts
they needed to use (semantic) and how to use them (syntax), they
failed to combine the codes while developing a program. For ex-
ample, one participant described how hard it was to transfer what
she thought of as a solution to a working program:

	 “I understand the whole programming thing, but like -- my basic
difficulty is like using their language for it (assembling a program).”

	 To ensure her intentions, a researcher asked what she
meant by “understanding the whole programming.” She explained
that:

	 “Just like understanding all of the different controls that they have
and like what each thing, like different control, is used for, what its purpos-
es...”

Strategies

To answer the second question which is about strategies that
pre-service teachers used to overcome their programming difficul-
ties, researchers identified the following five categories:

Planning: The pre-service teachers exhibited similar approaches to
solving the difficulties they faced in using the programming plat-
forms. For example, one indicated that she planned how to solve
a given problem step-by-step before she actually attempted to use
the programming platform.

	 Similarly, using worksheets was a part of the planning
process in which one of the participants from the interview shared
her experience that:

	 “He [the instructor gave us] the chart paper and he’ll be like write
out your steps…, and it’s not in like coding language like we’re writing in like
English and math...”

Resource use: Pre-service teachers were frequently using resources
(e.g., textbooks, similar codes, and class notes) as a strategy to over-
come their difficulties. Such use of resources especially occurred
when they were working alone. For example, one participant talked
about how she used example codes as her strategy:

“One strategy is when I am working on my own myself as I pull out those
examples [codes] that we’ve done in class and kind of compare my code [to see]
what I’m missing here…”

	 Through observing pre-service teachers, researchers also
found that they frequently used Google to find answers for their
difficulties.

Support: Students often sought support from peers, teaching assis-

tants, and the instructor. They perceived peers’ support as the most
valuable and the quickest way to overcome the difficulties. When
they faced a difficulty, they would help each other. If they could
not figure out the problems, they would, as observed in the class,
go to the teaching assistants or the instructor to ask for help. One
of the pre-service teachers described peer support as:

	 “Different people in the class understand different things, so like I
could help someone with a certain aspect of it and they like understand some
other.”

Guess and check: Another strategy was guessing and checking dif-
ferent concepts to overcome their difficulties. If pre-service teach-
ers could not identify the problem, they would try different code
blocks in Scratch to solve it. As one of the participants said that:

	 “Mostly it (way of overcoming my difficulties) was a lot of like
guessing and checking to see… if this would solve the problem or not.”

Visualization: The pre-service teachers reported this strategy when
being asked about Scratch programming. The Scratch program-
ming platform allows users to see how their block codes work,
which is an intended design principle of visual coding. Another
pre-service teacher stated that she observed the results of her
codes in Scratch to detect where her block codes failed to run
properly.

Summary

The findings of this study indicated that pre-service teachers en-
countered different difficulties while learning to program. These
difficulties were: understanding CT concepts, using CT concepts,
identifying the problem, and developing a program. In addition,
pre-service teachers used several strategies to overcome their dif-
ficulties including planning the solution, using resources, receiving
support from peers or the instructor, guessing and checking, and
using visualization.

DISCUSSION

This case study was conducted to explore the challenges pre-ser-
vice teachers encountered while learning programming languag-
es and the strategies they used to overcome their difficulties. We
found that pre-service teachers struggled in the process of learn-
ing computational concepts through using programming lan-
guages. This was not an unexpected experience of learners of
programming languages. As different researchers shared similar
findings, learners, including pre-service teachers, might have a lack
of understanding of how to use computational concepts or when
they might need to use those concepts.11,21 Since such difficulties
of learners are likely to occur in teaching computational concepts
using a programming language, instructor’s choice of instruction-
al strategy with a careful consideration of different learner’s need
gains a higher importance. Van Merriënboer and Paas’s22 emphasis
on the importance of practicing the concepts while learning how
to program is still noteworthy for students and teachers as the find-
ings of this study suggest.

Case Study | Volume 6 | Number 1 |4

http://dx.doi.org/10.17140/PCSOJ-6-152

Kwon K et al

Psychol Cogn Sci Open J. 2020; 6(1): 1-6. doi: 10.17140/PCSOJ-6-152

	 The findings of this case study confirms the previous
literature on the difficulties of learning computational concepts
and learning how to program by using two programming languages
such as dealing with syntax errors11,14 and the struggle of initiating
how to program.13,14 However, this study contributed to the litera-
ture by identifying the difficulties of preservice teachers who were
learning to teach computational concepts by using programming
languages. Because of the design of this learning process, pre-ser-
vice teachers used two programming languages and we were able
to draw a conclusion that pre-service teachers had to pay more
attention on the details such as syntax while using Python; whereas
they can focus on the use of the concepts when they were solving
the given task with Scratch. Several studies also confirmed that
learners might have more difficulties with Python while identifying
what prevents their code from running appropriately.11,13 There-
fore, the instructor who teach the text programming languages
should pay more attention on practicing the use of concepts with
the intended programming language.22

	 In addition, we identified that pre-service teachers used
a variety of strategies such as worked examples to overcome the
difficulties they faced in solving computational problems. Even
though the literature suggested similar strategy uses of novice pro-
grammers,10,11,15-17 we identified that pre-service teachers learned
these strategies from the instructor or peers during the process of
solving computational problems. Therefore, it would be more ben-
eficial to learners if they were informed by the instructors in terms
of what kind of difficulties they might face during the learning
process, as well as the possible uses of problem solving strategies.

Implications for Research and Practice

The findings of this study encompassed several implications for
both future research and practice. First, one should replicate the
current study with a large number of participants and focus on
one aspect of programming difficulties, such as semantic. Fur-
thermore, future studies should examine the gender differences in
programming difficulties. Regarding the implications for practice,
instructors should guide students in terms of how to use strategies
and give them more time to practice. Based on the difficulty, in-
structors can provide tailored support accordingly.

LIMITATIONS

In this study, there were several limitations that should be ad-
dressed. First, all participants were female recruited by the conven-
ience sampling. The sample size is too small to invoke any mean-
ingful statistical test results. In addition, archival data were not fully
comprehensive to support the interview and observation data in
terms of triangulation purposes.

CONCLUSION

The study suggests that pre-service teachers learning computation-
al concepts through programming languages encountered several
difficulties including: a lack of understanding the computational

concepts (semantic), using the concepts inappropriately (syntax),
developing a program, and identifying problems (debugging). They
have also indicated several strategies they used to overcome their
problems including planning the solution, using resources, receiv-
ing support, and using visualization. These findings suggest-in-
structors should include more practice to provide students with a
clear understanding of the computational concepts and guidance
in terms of how learners should overcome their difficulties.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

1. Wing JM. Computational thinking. Communications of the ACM.
2006; 49(3): 33-35. doi: 10.1145/1118178.1118215

2. Voogt J, Fisser P, Good J, Mishra P, Yadav A. Computational
thinking in compulsory education: Towards an agenda for research
and practice. Education and Information Technologies. 2015; 20(4): 715-
728. doi: 10.1007/s10639-015-9412-6

3. Lang K, Galanos R, Goode J, et al. Bugs in the system: Comput-
er science teacher certification in the US Web site. https://www.
csteachers.org/documents/en-us/3b4a70cd-2a9b-478b-95cd-
376530c3e976/1. Accessed February 19, 2020.

4. Nager A, Atkinson RD. The case for improving US computer
science education Web site. http://www2.itif.org/2016-comput-
er-science-education.pdf. Accessed February 19, 2020.

5. Grover S, Pea R. Computational Thinking in K-12: A review of
the state of the field. Educational Researcher. 2013; 42(1): 38-43. doi:
10.3102/0013189X12463051

6. Kalelioglu F, Gulbahar Y, Kukul V. A framework for computa-
tional thinking based on a systematic research review. Baltic Journal
of Modern Computing. 2016; 4(3): 583-596.

7. Gal-Ezer J, Stephenson C. A tale of two countries: Successes
and challenges in K-12 computer science education in Israel and
the United States. ACM Transactions on Computing Education (TOCE).
2014; 14(2): 8. doi: 10.1145/2602483

8. Guzdial, M. Learner-centered design of computing education:
Research on computing for everyone. Synthesis Lectures on Hu-
man-Centered Informatics. 2015; 8(6): 1-165. doi: 10.2200/S00684ED-
1V01Y201511HCI033

9. Yadav A, Zhou N, Mayfield C, Hambrusch S, Korb JT. Intro-
ducing computational thinking in education courses. Educational
Studies. 2011; (2): 465-470. doi: 10.1145/1953163.1953297

10. Yadav A, Stephenson C, Hong H. Computational thinking for

Case Study | Volume 6 | Number 1 | 5

http://dx.doi.org/10.17140/PCSOJ-6-152
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1007/s10639-015-9412-6
https://www.csteachers.org/documents/en-us/3b4a70cd-2a9b-478b-95cd-376530c3e976/1
https://www.csteachers.org/documents/en-us/3b4a70cd-2a9b-478b-95cd-376530c3e976/1
https://www.csteachers.org/documents/en-us/3b4a70cd-2a9b-478b-95cd-376530c3e976/1
http://www2.itif.org/2016-computer-science-education.pdf
http://www2.itif.org/2016-computer-science-education.pdf
https://doi.org/10.3102/0013189X12463051
https://doi.org/10.1145/2602483
https://doi.org/10.2200/S00684ED1V01Y201511HCI033
https://doi.org/10.2200/S00684ED1V01Y201511HCI033
https://doi.org/10.1145/1953163.1953297%20

Kwon K et al

Psychol Cogn Sci Open J. 2020; 6(1): 1-6. doi: 10.17140/PCSOJ-6-152

teacher education. Communications of the ACM. 2017; 60(4): 55-62.
doi: 10.1145/2994591

11. Basu S, Biswas G, Sengupta P, Dickes A, Kinnebrew JS, Clark
D. Identifying middle school students’ challenges in computation-
al thinking-based science learning. Research and Practice in Technology
Enhanced Learning. 2016; 11: 13. doi: 10.1186/s41039-016-0036-2

12. Saeli M, Perrenet J, Jochems WMG, Zwaneveld B, Nederland
OU, Centrum RDM. Teaching programming in secondary school:
A pedagogical content knowledge perspective. Informatics in Educa-
tion. 2011; 10(1): 73-88. doi: 10.1145/2016911.2016943

13. Winslow LE. Programming pedagogy—a psycholog-
ical overview. ACM Sigcse Bulletin. 1996; 28(3): 17-22. doi:
10.1145/234867.234872

14. Lahtinen E, Ala-Mutka K, Järvinen H-M. A study of the dif-
ficulties of novice programmers. ACM SIGCSE Bulletin. 2005;
37(3): 14-18. doi: 10.1145/1151954.1067453

15. Chao PY. Exploring students’ computational practice, design
and performance of problem-solving through a visual program-
ming environment. Computers & Education. 2016; 95: 202-215. doi:
10.1016/j.compedu.2016.01.010

16. Navarro-Prieto R, Cañas JJ. Are visual programming languages
better? The role of imagery in program comprehension. Interna-

tional Journal of Human-Computer Studies. 2001; 54(6): 799-829. doi:
10.1006/ijhc.2000.0465

17. Israel M, Pearson JN, Tapia T, Wherfel QM, Reese G. Support-
ing all learners in school-wide computational thinking: A cross-
case qualitative analysis. Computers and Education. 2015; 82: 263-279.
doi: 10.1016/j.compedu.2014.11.022

18. Merriam SB, Tisdell EJ. Qualitative Research: A Guide to Design and
Implementation. 4th ed. San Francisco, CA, USA: Jossey-Bass; 2016.

19. Maloney J, Resnick M, Rusk N. The scratch programming lan-
guage and environment. ACM Transactions on Computing Education.
2010; 10(4), 1-15. doi: 10.1145/1868358.1868363.http

20. Fraenkel JR, Wallen NE, Hyun HH. How to Design and Evaluate
Research in Education. New York, NY, USA: McGraw-Hill Educa-
tion; 2015.

21. Ginat D. On novice loop boundaries and range concep-
tions. Computer Science Education. 2004; 14(3): 165-181. doi:
10.1080/0899340042000302709

22. Van Merriënboer JJ, Paas FG. Automation and schema acquisi-
tion in learning elementary computer programming: Implications
for the design of practice. Computers in Human Behavior. 1990; 6(3):
273-289. doi: 10.1016/0747-5632(90)90023-A

Case Study | Volume 6 | Number 1 |6

Submit your article to this journal | https://openventio.org/submit-manuscript/

http://dx.doi.org/10.17140/PCSOJ-6-152
https://doi.org/10.1145/2994591
https://doi.org/10.1186/s41039-016-0036-2
https://doi.org/10.1145/2016911.2016943
https://doi.org/10.1145/234867.234872
https://doi.org/10.1145/1151954.1067453
https://doi.org/10.1016/j.compedu.2016.01.010
https://doi.org/10.1006/ijhc.2000.0465
https://doi.org/10.1016/j.compedu.2014.11.022
https://doi.org/10.1145/1868358.1868363.http
https://doi.org/10.1080/0899340042000302709
https://doi.org/10.1016/0747-5632%2890%2990023-A%0D

	Corresponding author

