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	 The	alveolar	surface	of	the	lung	is	covered	by	large	flat	type	I	epithelial	cells.	Even	
though	type	I	cells	represent	only	around	10%	of	the	cells	present	in	the	alveolus;	they	cover	
much	of	the	surface	area	in	the	developed	lung.1	Given	their	thinness	and	proximity	to	the	capil-
lary	endothelium;	it	is	well	accepted	that	type	I	cells	play	an	important	role	in	gas	exchange.2 

In	addition,	 these	cells	are	 important	 to	maintain	adequate	fluid	balance	in	 the	alveolus3 via 
the	tight	junctions,4	ion	transport	channels5	and	aquaporin-5.6 Recent studies also indicate that 
type	I	cells	participate	in	innate	immunity;	they	express	toll-like	receptor	4	and	produce	pro-
inflammatory	cytokines.7,8	Studies	from	T1α	knockout	mice	indicate	that	alveolar	type	I	cells	
may	be	critical	for	normal	lung	development.	T1α,	a	lung	type	I	cell	differentiation	gene,	is	de-
velopmentally	regulated	and	expressed	only	in	type	I	cells.	T1α	knockout	mice	died	at	birth	of	
respiratory	failure.	Histologic	analysis	show	fewer	alveolar	type	I	cells	and	decreased	alveoli.9 
All	together,	these	investigations	suggest	a	critical	role	for	type	I	cells	in	gas	exchange,	alveolar	
fluid	hemostasis,	immunity	and	fetal	lung	development.	

	 The	typical	flat	morphology	of	type	I	cells	begin	to	appear	in	the	late	canalicular	peri-
od	and	increase	in	number	during	the	saccular	and	alveolar	stages	of	lung	development.10	It	has	
been	believed	that	type	I	cells	are	derived	from	type	II	cells.11,12	However,	recent	studies13 using 
specific	markers	for	type	I	(T1alpha	(T1α)	and	Receptor	for	Advanced	Glycation	Endproducts	
(RAGE)))	and	type	II	cells	(SP-C,	NKX2-1,	and	ABCA3)	have	demonstrated	the	presence	in	
the	distal	lung	of	alveolar	progenitor	cells	containing	both	phenotypes,	before	they	became	dif-
ferentiated	type	I	or	type	II	cells.	Therefore,	these	studies	show	that	during	fetal	lung	develop-
ment,	alveolar	type	I	and	type	II	epithelial	cells	are	derived	from	a	bipotent	progenitor	cell.13 
Hooper’s	group	 found	 that	 the	numbers	of	 “intermediate	cells”	expressing	both	phenotypes	
were	strongly	influenced	by	the	degree	of	lung	expansion,14 supporting	the	role	of	mechanical	
signals	in	fetal	lung	development	and	differentiation	of	alveolar	epithelial	cells.

	 Many	 premature	 infants	 born	 with	 underdeveloped	 lungs	 develop	 Bronchopulmo-
nary	dysplasia	(BPD),	a	chronic	inflammatory	lung	disease	with	serious	short-	and	long-term	
complications.	Although	the	etiology	of	BPD	is	multifactorial,	mechanical	ventilation	plays	a	
central	role.15	Excessive	stretch	of	the	lung	by	mechanical	ventilation	can	disrupt	the	integrity	
of	the	alveolar-capillary	barrier,	resulting	in	interstitial	and	alveolar	edema.	Neutrophils	and	
macrophages	recruited	to	the	lung	can	then	trigger	and	amplify	an	injury	response	by	releasing	
cytokines	 and	other	 inflammatory	mediators.16,17	Many	of	 these	pro-inflammatory	 cytokines	
are	secreted	by	alveolar	macrophages,	fibroblasts,	type	II	pneumocytes,	and	endothelial	cells.18 
Distal	 lung	parenchyma	cells	can	be	directly	exposed	to	overstretch,	and	therefore	 to	 injury	
secondary	to	mechanical	ventilation.	It	has	been	shown	for	example	that	type	II	epithelial	cells	
release	proinflammatory	cytokines	in	response	to	mechanical	injury.19-22	Given	that	type	I	epi-
thelial	cells	cover	much	of	the	distal	epithelium	of	the	lung,	these	cells	are	also	at	risk	for	injury	
mediated	by	mechanical	ventilation.	However,	the	contribution	of	type	I	cells	to	the	pathogen-
esis	of	BPD	is	not	clearly	defined,	in	part	because	of	the	difficulty	in	isolating	type	I	cells	in 
vitro.23 Nevertheless,	 recent	 studies	 have	 found	 these	 cells	 produce	Tumor	Necrosis	 Factor-
alpha	(TNF-α),	Interleukin-1	beta	or	IL-1beta	(IL-1β),	and	Interleukin	6	(IL-6)	after	exposure	
to	Lipopolysaccharide	(LPS).24	In	fact,	some	authors	believe	that	alveolar	type	I	epithelial	cells	
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are	a	more	important	source	of	pro-inflammatory	cytokines	than	type	II	cells.25 Moreover,	the	Receptor	for	advanced	glycation	end-
products	(RAGE)	is	found	only	on	type	I	cells	in	the	lung.26	RAGE	signaling	is	mediated via	NF-κB	pathway,	stimulating	production	
of	pro-inflammatory	cytokines	and	inducing	apoptosis.27

	 The	epithelial	barrier	is	composed	of	tight	junctions	connected	to	the	actin	cytoskeleton	via	occludin	or	zonula	occludens.	
It	has	been	shown	that	mechanical	strain	of	alveolar	epithelial	cells,	mimicking	mechanical	ventilation	with	high	tidal	volumes,	
resulted	in	actin-mediated	cell	contraction	with	subsequent	increased	in	paracellular	permeability28	and	breakdown	of	intercellular	
junctions.29,30 These	junctions	could	be	affected	by	mechanical	injury,	leading	to	pulmonary	edema.31,32	In	addition	to	maintaining	
the	integrity	of	the	epithelial	barrier	by	the	tight	junctions,	epithelial	cells	need	mechanisms	to	reabsorb	the	fluids	present	in	the	
interstitium	and	alveolar	spaces	after	lung	injury	mediated	by	mechanical	ventilation.33	This	process	is	mediated	by	active	transport	
of	Na+	through	amiloride-sensitive	cation	channels	Epithelial	Na+	Channels	(ENaC)	present	in	the	apical	cell	membranes	and	the	
Na+/K+-ATPases	localized	mainly	in	the	basolateral	cell	membrane.34-37	Electron	microscope	studies	provided	clear	evidence	for	the	
major	abnormalities	in	the	blood-gas	barrier	during	lung	injury.	Damage	of	alveolar	type	I	epithelial	cells	was	observed	in	rabbits	
ventilated	with	a	peak	inspiratory	pressure	of	20	cm	H2O	for	6	hours.

38	In	these	studies,	some	endothelial	cells	were	detached	from	
their	basement	membrane,	resulting	in	the	formation	of	intra-capillary	blebs.	There	were	also	occasional	breaks	in	endothelial	cells.	
More	prolonged	exposure	to	injurious	stress	produced	alveolar	epithelial	pathology	ranging	from	inter-	and	intra-cellular	gap	forma-
tions	with	denuded	basement	membranes	to	extensive	cell	destruction.39 

	 In	 summary,	 and	 as	discussed	 in	 an	 excellent	 review	by	Dr.	Rozycki,23	 alveolar	 development	 requires	 an	orchestrated	
signaling	cross-talk	among	different	cells	of	the	distal	lung.40 Given	that	type	I	epithelial	cells	are	critical	for	normal	lung	develop-
ment	and	to	maintain	the	hemostasis	of	the	distal	lung,	damage	of	these	cells	and/or	their	progenitors	by	mechanical	ventilation	and	
hyperoxia	could	not	only	disrupt	normal	pulmonary	development	but	also	have	a	significant	contribution	to	the	pulmonary	edema	
and	inflammation	observed	in	patients	with	BPD.	Future	studies	will	provide	more	insights	into	the	role	of	these	forgotten	cells	in	
fetal	lung	development	and	lung	injury	of	premature	lungs.
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