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ABSTRACT

	 The demand for organs such as the liver for patients with end stage disease is greater 
than what is currently available. Thus, there is a dire need to have alternative solutions, for 
which none exist at the moment. Investigating the key underlying mechanisms involved not 
only in liver regeneration and repair, but also in development, can give us a better under-
standing of how to promote a pro-regenerative phenotype in the liver. This review will focus 
on the cellular and molecular aspects of liver regeneration and address signaling mechanisms 
involved in liver development and how they are recapitulated in regeneration after a partial 
hepatectomy. 

KEYWORDS: Liver; Regeneration; Hepatectomy; Stem cell; Healing; Inflammation.

ABBREVIATIONS: PHx: Partialhepatectomy; HSC: Hepatic Stellate Cells; BECs: Biliary Epi-
thelial Cells; STM: Septum Transversum Mesenchyme; IL-6: Interleukin-6; FSCs: Facultative 
Stem Cells; Ang2: Angiopoietin 2; GFAP: Glial Fibrillary Acidic Protein; GFP: Green Fluores-
cent Protein; Hh: Hedgehog.

PREFACE

	 The liver’s remarkable regenerative capacity was first described by the Greeks in 
the legend of Prometheus, a Titan who was banished by Zeus to eternal punishment. He was 
chained to a rock on a mountain, where an eagle would eat his liver daily, only to have it regen-
erate every night. To this date, we still do not have a clear idea how the liver recovers following 
injury. 

INTRODUCTION

	 The liver is known for its imperative roles in metabolic homeostasis, immune regu-
lation, bile secretion, serum protein synthesis and detoxification properties. The majority of 
blood flow that enters the liver is from the spleen, pancreas and intestines via the portal vein. 
This blood gets filtered from toxins and drugs before entering the heart to be circulated to the 
rest of the body. Thus, the liver is subjected to routine exposure to damaging agents. It has 
been hypothesized that the liver has evolved to become a highly regenerative organ to counter 
these toxins,1 because liver dysfunction and failure can ultimately lead to death. It is yet to be 
demonstrated whether the liver’s remarkable regenerative capacity is due to several cell types 
or a single cell of origin. 

	 One of the most studied models of cell organ and tissue regeneration is liver regenera-
tion after a 2/3 Partialhepatectomy (PHx). Different methods of liver resection are used to ob-
tain the desired amount of liver mass loss. When performing a PHx, the vessels and ducts at the 
pedicel of the particular lobe must be ligated prior to cutting the lobe. Typically, the left lateral 
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lobe and median lobes are removed, which equates to 67% of the 
liver mass.2 There is an impressive increase in hepatocyte pro-
liferation, which peaks at 36 hours,2 followed by reconstitution 
of non-parenchymal cells after surgical liver resection as seen in 
animals. This surgical model has become popular over the last 
few years and gained acceptance by the majority of the research 
community for numerous reasons. The first reason being due to 
the multi-lobe structure of the liver, resection of different seg-
ments can be done without disturbing the remnant lobe(s). Thus, 
regeneration of the remaining lobes is accomplished through 
liver specific mechanisms and not due to acute inflammation or 
necrosis,3,4 which is observed during liver laceration. Second, 
the procedure can be done in 10-15 minutes and regeneration 
is triggered almost instantly, which can be tracked temporally 
through different phases. Third, the procedure is easily repro-
ducible and if done correctly, all animals will survive.2

	 Due to the absence of any significant inflammation or 
injury to the remaining lobes after a PHx,4 there is no reported 
observation of stem cell activation or cellular reprogramming. In 
fact, after a PHx, the liver does not regrow the resected lobes but 
the remaining lobes, compensate for the loss via proliferation 
and increase in hepatocyte size. This process is referred to as 
“compensatory hypertrophy”5,6 but we will continue to use “liver 
regeneration” as it is still a widely used term in this field. Previ-
ous studies have shown that during liver regeneration, almost all 
the hepatocytes undergo1-2 rounds of replication to restore nor-
mal liver mass.6,7 However, more recent findings using modern 
lineage tracing and imaging techniques demonstrate that cellular 
hypertrophy is a significant contributor to the compensatory re-
sponse and that hepatocytes undergo on average only 0.7 rounds 
of cell division in mice. The first 4 hours after a PHx is known as 
the “priming phase” as hepatocytes prepare to respond to vari-
ous cytokines by substantially changing their gene expression, 
including up-regulation of anti-proliferative genes.8 It is specu-
lated that it is during this phase that hepatocyte hypertrophy is 
initiated. 

	 Considering that healing involves several stages start-
ing with inflammation, it is not clear whether the regenerative 
capacity of liver is mainly due to the absence of significant in-
flammation or the internal capacity of liver by itself to deliver 
the regeneration capacity. Part of this might be due to its unique 
histology and anatomical position, which we will discuss here. 

LIVER ANATOMY

	 The liver is made of liver lobules, which are hexagonal 
in shape with a portal triad in each corner and a central vein in 
the center9 (Figure 1A). The portal triad consists of a bile duct, 
portal venule and portal arteriole. Hepatocytes work to absorb 
metabolites and toxins, which have entered the liver through the 
portal vein. Bile is secreted from hepatocytes into the bile ducts, 
which will eventually enter the gall bladder for storage and re-
leased into the duodenum. Sinusoids are lined with endothelial 

cells forming the blood vessels. They drain the blood from the 
portal venules and arterioles into the central vein to be taken 
back to the heart. Inside the sinusoids are Kupffer cells, which 
are the resident macrophages of the liver. These cells work to 
cleanse the blood before it enters the central vein. Hepatic Stel-
late Cells (HSC) are located in the area between the sinusoids 
and hepatocytes, known as the space of Dissé10 (Figure1B).

OVERVIEW OF LIVER DEVELOPMENT 

	 Hepatocytes make up approximately 70% of the mass 
of the adult organ and are derived from embryonic endoderm, 
as are Biliary Epithelial Cells (BECs), also known as cholan-
giocytes. Other cells populating the liver include stellate cells, 
Kupffer cells and endothelial cells, which are of mesodermal 
origin. Through developmental studies on various animal mod-
els such as mouse, chicken, zebrafish, and Xenopus, many genes 
and molecular pathways have been identified that regulate em-
bryonic development. These studies have enabled scientists to 
identify pathways implicated in liver regeneration in adult ani-
mals and humans. The regenerative mechanisms appear to reca-
pitulate what is observed during development. 

Figure 1: The functional unit of the liver. (A) The liver lobule. (B) The cell populations between 
the portal triad and central vein. 
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	 The endoderm germ layer develops during gastrulation 
and forms a primitive gut tube that is subdivided into foregut, 
mid-gut, and hindgut regions. Fate mapping studies have dem-
onstrated that the embryonic liver originates from the ventral 
foregut endoderm at embryonic day 8.0 of gestation (e8.0).11 The 
thickening of the ventral foregut epithelium at e9.0 results in a 
hepatic diverticulum, which is the first indicator of liver devel-
opment. The anterior segment of the hepatic diverticulum gives 
rise to the liver and intrahepatic biliary tree, while the posterior 
segment forms the gallbladder and extra-hepatic bile ducts. Pre-
ceding vascularization of the liver bud, at e9.0 endothelial pre-
cursor cells are situated between the epithelial cells and the Sep-
tum Transversum Mesenchyme (STM). Expression of vascular 
endothelial growth factor receptor 2 (Vegfr-2) has been shown to 
be essential as embryos that lack this gene fail to produce endo-
thelial cells and hepatoblasts cannot go on to occupy the STM.12

	 During e9.5, the liver bud forms through the hepatic 
endoderm cells, known as hepatoblasts, and occupying the 
STM.13,14 The STM provides the hepatic fibroblasts and stel-
late cells.15 Starting at e10 until e15, liver bud gets invaded by 
hematopoietic cells as its development accelerates in order to 
become the main hematopoietic organ of the fetus. Thus, liver 
development involves contributions from tissues of endoderm 
and mesoderm origin. Hepatoblasts have bi-potential proper-
ties. Hepatoblasts that surround the portal vein differentiate to 
cholangiocytes, which form the primitive bile ducts also known 
as ductal plates. Primitive cholangiocytes express markers: Sry 
box containing gene 9 (Sox9), Ostepontin (OPN), and EpCAM. 
The remaining hepatoblasts in the parenchyma differentiate into 
hepatocytes.16

ESSENTIAL FACTORS DURING LIVER DEVELOPMENT 

	 The regional identity of the endoderm seems to be 
contingent upon the spatial gradients of FGF, Wnt, BMP and 
retinoic acid secreted from the adjacent mesoderm.17 However, 
it is still not understood how these pathways specify regional 
identity. Studies on chick and Xenopus suggest that FGF and 
Wnts released from the posterior mesoderm suppress foregut 
fate and promote hindgut development.18 To establish foregut 
identity Wnt and FGF4 signaling needs to be inhibited in the 
anterior mesoderm. Inhibiting β-catenin, a downstream effector 
molecule in Wnt signaling, results in activation of Hhex, lead-
ing to ectopic liver buds in the intestine.17 Interestingly, by e10, 
β-catenin has the opposite effect and promotes hepatic growth.19 

The specific Wnt ligands that effect hepatogenesis are still un-
known. Experiments on chick embryos show that Wnt9a ex-
pressed in the sinusoidal wall is essential for liver bud growth 
through proliferation of hepatoblast and hepatocytes in culture.12

In zebrafish, Wnt2b expression in the lateral plate mesoderm 
has been shown to be necessary for liver development. Wnt2 
is also expressed in the lateral plate mesoderm and cooperates 
with Wnt2bbto control liver specification and proliferation in 
zebrafish.20 The combined role of these signaling molecules is 

essential for liver specification because blocking them causes 
liver agenesis.21 

	 In terms of hepatoblast proliferation and differentia-
tion, hedgehog signaling is involved in promoting the prolifera-
tive response and subsequently needs to be shut off for differen-
tiation to occur in a timely manner.22

	 Jagged-1, a Notch ligand is known to be expressed in 
the portal mesenchyme, which activates Notch-2 in neighbour-
ing hepatoblasts, to promote differentiation of hepatoblasts into 
bile ducts.23 Loss of Jag1 expression in the portal vein mesen-
chyme causes duct development to stall midway during ductal 
plate morphogenesis, leading to a paucity of bile ducts.24

	 Despite advancements in system biology and cell lin-
eage studies, the cellular and molecular mechanisms of liver 
regeneration are still not clear. The information we learn and 
gather from regeneration of the liver may be used and applied to 
enhance regeneration of other organs. Here, we summarize the 
molecular and cellular mechanisms of liver regeneration after a 
PHx.

THE CELLULAR RESPONSE AFTER A PHx

	 Proliferation is the main method of liver regeneration 
after a PHx.25 In mice it takes one week for the liver to return to 
75% of its original size. The regenerative response involves con-
stitution of hepatocytes first followed by biliary epithelial cells 
and then non-parenchymal cells.26 Although cellular prolifera-
tion is the key regenerative mechanism, cellular hypertrophy is 
also observed.6 Impaired hepatocyte proliferation is observed in 
aged mice, which is reversed in pregnant mice. Pregnant mice 
recover from a PHx at rates comparable to younger mice through 
hepatocyte hypertrophy.27 This highlights the role of systemic 
factors contributing in hepatocyte hypertrophy.

	 The liver’s response to a PHx is divided into two main 
phases. The first phase occurs between days 1-3 and is termed 
the “inductive phase” (Figure 2A). During this phase hepato-
cytes undergo proliferation. This proliferative response peaks at 
36 hours and goes back down at 72 hours.28-30 The “angiogenic 
phase” is the next phase which occurs, from day 4 to 8, where 
non-parenchymal cells proliferate, returning the liver to its nor-
mal mass and function (Figure 2B). Non-parenchymal cells have 
an essential role during these phases of regeneration, which will 
be discussed in more detail below.

THE MOLECULAR RESPONSE AFTER A PHx

	 The ability of the liver to know when to start and stop 
regeneration has puzzled scientists for years. However, certain 
factors have been shown to be necessary for regeneration post 
PHx. For example, Interleukin-6 (IL-6) and the bile acid recep-
tor, FXR, have been shown to be essential for regeneration.31,32 
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When the genes for IL-6 or FXR are knocked down, there is 
a higher mortality rate post PHx compared to their respective 
wild-type counterparts. In addition, assessment of proliferation 
through BrdU staining shows a poor proliferative response in 
hepatocytes. However, there is no change in non-parnechymal 
cells such as Kupffer cells, and endothelial cells, suggesting that 
non-parenchymal cells do not need IL-6 for this response. 

	 According to transplantation studies, hepatocytes ap-
pear to have intrinsic regenerative mechanisms that are species-
specific. For instance, transplantation of rat hepatocytes into 
mice liver, which later are subjected to PHx, has shown irreg-
ular proliferation kinetics. Rat hepatocytes become BrdU+ 24 
hours later, as expected while mouse hepatocytes express BrdU 
32 hours later.33 Thus, even with the change in cellular environ-
ment, rat hepatocytes stay true to their typical response to a PHx. 
This suggests that hepatocytes have a certain level of autonomy 
when it comes to regeneration and highlights the intrinsic ca-
pability of hepatocytes rather than micro-environmental niche 
effects.

	 An alternative mechanism to liver regeneration in-
volves a group of cells termed “Facultative Stem Cells” (FSCs) 
or “oval cells”. FSCs were first described in rat studies that in-
volved exposure to several carcinogens that are known to be 
toxic to the liver.34 In rats it has been shown that these cells ap-
pear when hepatocyte proliferation is impaired but they are also 
observed in mice even with hepatocyte proliferation. However, 
the appearance of oval cells or impaired proliferation is not ob-
served when rodents undergo a PHx without any chemical inter-
vention. Further discussion of FSCs is beyond the scope of this 
review. Although, it is evident that the liver’s resiliency comes 
from the multiple avenues of regeneration at its disposal. 

LIVER SINUSOIDAL ENDOTHELIAL CELLS (LSECs)

	 LSECs are shown to regulate the temporal response 
of liver regeneration post-PHx. Angiopoietin 2 (Ang2), is an 
angiogenic protein that is down-regulated during the inductive 
phase,30 which is associated with decreased TGF-β, an anti-
proliferative factor, and increased expression of cyclin D1, thus 
boosting hepatocyte proliferation (Figure 2C). In the angio-
genic phase, Ang2 levels increase, and subsequently promotes 
increased VEGFR2 and Wnt2 expression and proliferation of 
LSECs initiates29 (Figure 2D).

	 The liver vasculature has varying responses to whether 
there is an acute or chronic injury. During an acute insult, there 
is up-regulation of CXCR7 by LSECs and increase in CXCR4, 
which together induce transcription factor inhibitor of DNA 
binding 1 (Id1).28 This induces production of Wnt2 and HGF, 
which are pro-regenerative angiocrine factors and triggers re-
generation. The essential role of CXCR7 was shown when dele-
tion of CXCR7 in LSECs through an inducible system resulted 
in a poor regenerative response due to an impaired ID1 mediated 

production of angiocrine factors.28 (Table 1)

MACROPHAGES

	 The powerful role macrophages play in regeneration 
has been shown in organisms such as zebrafish, which depend 
on these cells to regenerate their fins, and portions of the heart. 
In addition, macrophages are required for limb re-growth in 
salamanders.40 The liver is known to have the highest concentra-
tion of resident macrophages of any organ. Both Kupffer cells 
and recruited monocyte-derived macrophages have been impli-

Liver Lineage Signalling pathway Reference 

Foregut Endoderm Wnt/β-catenin and FGF4 sup-
pressed 

18 

Hepatoblast FGF, BMP 35,36

Hepatocyte Wnt/β-catenin 20,37

Cholangiocyte (Bile duct 
cell) Notch 38,39

Figure 2: The proliferation kinetics and main signalling pathways involved in liver regeneration 
after a PHx. (A) Proliferation of non-parenchymal cells occurs during the inductive phase. (B) The 
angiogenic phase involves proliferation of non-parenchymal cells. (C) Role of non-parenchymal 
cells during hepatocyte proliferation in the inductive phase. (D) Role of non-parenchymal cells in 
inhibiting hepatocyte proliferation arrest and regeneration in the angiogenic phase.

Table 1: Signalling pathways involved in liver development.
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cated in liver regeneration after a PHx.41 When macrophages are 
ablated using liposomal clodronate followed by a PHx there is 
a delayed proliferative response from hepatocytes and the size 
of the remnant liver at 96 hours post-surgery is significantly 
less in Kupffer cell depleted rats.41 This suggests that cytokines 
and growth factors secreted by macrophages are important for 
proliferative responses. Expression of key cytokines involved 
in liver regeneration are also down regulated at the mRNA 
level, this includes, IL-6, IL-10, TNF, HGF, and TGF-β1 at 4 
hours post-PHx. The temporal defect in liver regeneration due 
to the absence of Kupffer cells may be associated with a lack 
of Wnt ligands that promote Wnt/β-catenin signaling in hepa-
tocytes. When there is macrophage specific knockdown of the 
gene Wntless and PHx is performed a temporal deficiency in 
liver regeneration is observed.42 There is a 1/3 drop in S- phase 
hepatocytes and hepatocyte mitosis was observed in Wls-MKO 
mice 40 hours after PHx. This was associated with a reduction in 
β-catenin-TCF4 complex and Cyclin-D1 expression at 40 hours, 
highlighting a role for β-catenin mediated TCF transcription fac-
tor in this process.43 These findings suggest that Kupffer cells are 
essential for initiating hepatocyte proliferation in a timely man-
ner through secretion of Wnt ligands. Other factors thought to be 
important for hepatocyte proliferation is interleukin-6 (IL-6) and 
tumor necrosis factor-α (TNF-α). Mice deficient in either IL-6 
or TNF-α receptor type 1 showed impaired hepatocyte prolifera-
tion 40 hours post-surgery and higher mortality. (Table 2)

STELLATE CELLS

	 In a healthy liver, Hepatic Stellate Cells (HSCs) are 
in a quiescent state and store lipids such as Vitamin A. HSCs 
encompass approximately 5-8% of cells. Upon chronic liver 
injury, impaired hepatocytes and immune cells secrete factors 
that cause HSCs to become proliferative and differentiate into 
myofibroblasts.10 These myofibroblasts are well known to be 
key producers collagen 1 and promote fibrosis.49 Thus, it seems 
they are associated with an undesirable outcome in liver injury. 
However, it is also suggested that HSCs may have pro-regener-
ative properties as well. Spatially, the majority of HSCs reside 
in the Canals of Hering, a suggested stem cell niche in the adult 

liver.46 More importantly, they are known to produce factors as-
sociated with regeneration such as HGF, Notch and hedgehog 
ligands. HSCs isolated from the early phase of regeneration in 
rats showed high levels of HGF in conditioned media. Further-
more, it has been argued that HSCs express the stem/progeni-
tor cell marker CD133+ and are able to differentiate into he-
patocyte-like cells with certain cytokines.47 A lineage study was 
done on HSCs using a Glial Fibrillary Acidic Protein (GFAP) 
promoter and a Green Fluorescent Protein (GFP) reporter gene 
showing that after a diet-induced injury GFP+ cells proliferate 
and express progenitor markers cytokeratin 7 and 19.48 After-
wards, GFP+ hepatocytes were observed suggesting that HSCs 
gave rise to progenitor cells that went on to differentiate into 
hepatocytes. They show that HSCs may produce hepatocytes via 
mesenchymal to epithelial transition.

	 HSCs play an essential role during liver regeneration as 
their regulatory effect includes stopping regeneration. They se-
crete factors that arrest regeneration once the appropriate mass is 
achieved. The dominant arresting factor is TGF-β, which HSCs 
are the main producers of in the liver. In mice with the gene 
Foxf1 knocked down, the stellate cells were unable to become 
activated and impaired liver regeneration ensued along with di-
minished notch-2 production, which promotes regeneration of 
biliary epithelial cells.50 Furthermore, in rats with 2-AAF/PHx 
injured livers and given L-cysteine in their diets, to impair stel-
late cell activation, there was abnormal regeneration due to poor 
progenitor cell response.51 Thus, HSCs appear to have a tem-
poral role in regulating the regenerative response of the liver. 
Initially, they promote regeneration through secretion of growth 
factors and then put on the brakes once the normal weight and 
function is achieved. 

THE CRITICAL ROLE OF HEDGEHOG SIGNALING 

	 The importance of Hedgehog (Hh) signaling goes be-
yond just development as it is up regulated during regeneration 
after PHx. When Hh signaling is blocked after a PHx, via cy-
clopamine, there is reduced expression of numerous progeni-
tor markers such as α-fetoprotein (AFP), Factor-inducible 14 

Role in liver regeneration Reference

Hepatocyte Hyper proliferative response post-PHx 25

Cholangiocyte (Bile duct cell) Hyper proliferative response post-PHx 38,44

Sinusoidal endothelial cell Spatiotemporal regulation in proliferation 
kinetics of hepatocytes and endothelial cells

28-30

Kupffer cell

Secrete wnt ligands that control hepato-
cyte proliferation in a timely manner, wnt3a 
secretion promotes differentiation of hepatic 

progenitor cells into hepatocytes.

41,45

Stellate cell

Secrete factors that promote and stop hepato-
cyte proliferation. May give rise to hepatocytes 

through MET, Secretion of Notch ligands 
promotes differentiation of hepatic progenitor 

cells to cholangiocytes.

46-48

Table 2: Contribution of different cellular components of the liver during liver regeneration.



                                                    SURGICAL RESEARCH

Open Journal
http://dx.doi.org/10.17140/SROJ-2-110

Surg Res Open J

ISSN 2377-8407

Page 58

(Fn14), and cytokeratin 19 at the mRNA and protein level.52,53 

Furthermore, proliferation of hepatocytes was impaired as BrdU 
incorporation decreased by 90% in hepatocytes and 40% in 
ductular cells.52,53 The final outcome of this treatment shows a 
higher mortality in comparison with the control treated group. 
This highlights the importance of Hh signaling pathway in liver 
regeneration. It is still not clear which cell type needs activation 
of the Hh signaling pathway during liver regeneration, which 
can be further elucidated in cell lineage studies.

CLINICAL INSIGHTS INTO LIVER REGENERATION

	 The human liver, like in rodents, undergoes a hyper-
proliferative response after a PHx.54,55 However, because the 
PHx model in animals, when done with precision, is relatively 
“clean” it does not fully recapitulate what is observed in the con-
text of human liver disease, where significant inflammation, ne-
crosis, and fibrosis are commonly observed. 

	 In humans, outcomes of hepatectomy have improved 
over time. However, post-hepatectomy liver failure is still one of 
the most fatal complications of hepatectomy and occurs in up to 
10% of cases. The ability of the remnant liver to regenerate af-
ter hepatectomy is the main factor in determining morbidity and 
mortality. If the remnant liver is less than 20%, liver function is 
impaired and could lead to post-resection liver failure.56,57 Due to 
a scarcity in treatments for numerous liver conditions, liver re-
section remains the sole remedy,54-57 despite the high concern for 
morbidity and mortality.58,59 Investigating the pro-regenerative 
aspects of the cell types discussed above may assist in enhanc-
ing the recovery and survival of patients’ post-hepatectomy and 
possibly after trauma, such as a severe burn.60 Thus, despite the 
divergence, the compensatory response after liver resection is 
clinically essential and provides a great model to learn about 
growth and regeneration. A better understanding of how cells 
in the liver interact and respond to their microenvironment will 
give us the ability to pinpoint aberrant healing and develop novel 
therapies to treat liver disease. 

FUTURE OUTLOOK

	 The regenerative capacity of the liver is unquestion-
able. Whether a single or several cell type(s) give rise to new he-
patocytes during liver regeneration is not yet well defined. While 
it is believed that hepatocytes undergo hypertrophy and prolifer-
ate to regenerate the liver, it is not clear whether all hepatocytes 
are able to proliferate. Can a group of hepatocytes have higher 
capacity to proliferate? Are these hepatic progenitor cells? In ad-
dition, the majority of liver regeneration studies using the PHx 
model focus on how regeneration is initiated and what factors 
promote it while missing out on how it is stopped once regenera-
tion is complete. Thus, future studies need to focus more on cell 
specific studies through lineage tracing to address the plasticity 
of liver cells and their fate during regeneration. Furthermore, a 
better understanding of how liver regeneration is terminated and 

the discrepancies between the PHx model in rodents and what is 
observed in the clinic need to be taken into consideration.
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