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 Diabetic nephropathy is a leading cause of end-stage renal failure. Approximately 
20-40% patients with diabetes mellitus will develop nephropathy with a significant propor-
tion requiring regular dialysis or kidney transplantation. The International Diabetes Federation 
estimates that 366 million people had diabetes worldwide in 2011 and 552 million people will 
have this disease by 2030.1 The increasing incidence of diabetes elevates diabetic nephropathy 
to one of the most important current public health issues, representing a significant burden on 
the health system.2 Despite current interventional strategies being intensively implemented, 
the number of patients with diabetes requiring renal replacement therapy for end-stage renal 
disease is growing.3 Current treatments of diabetic nephropathy slow its progression,3 so the 
optimal therapeutic strategy to arrest or reverse the nephropathy is needed urgently. As multiple 
risk factors and their interactions promote the development of diabetic nephropathy, targeting 
a single factor may be ineffective in the treatment of this disease; thus, optimal treatments by 
targeting multiple factors need to be developed to arrest or reverse the diabetic nephropathy.

 The classical features of diabetic kidney include glomerular and tubular basement 
membrane thickening, and mesangial and interstitial expansion. There is deposition of extracel-
lular matrix in both glomerular and interstitial compartments.4 Due to increased matrix protein 
production and decreased protein degradation, over accumulation of collagen type I, III and IV, 
and fibronectin occurs in the mesangium and interstitium, which leads to decreased glomerular 
filtration, tubular injury and interstitial fibrosis. The mechanisms of the diabetic nephropathy 
have been largely investigated. It was well documented that chronic hyperglycaemia interferes 
with various intracellular processes including activation of protein kinase C, leads to genera-
tion of Advanced glycation end-products (AGEs) and reactive oxygen species, of inflammatory 
cytokines and chemokines and changes in cellular signaling pathways leading to dysregulation 
of transcription factors controlling the extracellular matrix homeostasis.5-7 However, diabetic 
nephropathy is complex and multifactorial and the current therapies are largely ineffective, 
therefore there is increasing urgency to identify novel therapeutic targets that will allow more 
precise control over disease development and progression.

 Current treatments of diabetic nephropathy involve the strict control of metabolic and 
hemodynamic abnormalities.8,9 Glycaemic control, reducing albuminuria and management of 
hypertension are commonly used to limit the progress of diabetic nephropathy.9 Despite of 
these strategies, the number of patients with diabetes that ultimately develop end-stage renal 
disease remains high. Novel agents to inhibit AGE-RAGE, PKC, TGFβ, oxidative stress, and 
fibrosis are under investigation.8 In recent years, inflammatory pathways and inflammasome 
activation in renal disease has been recognised.10,11 Micro-RNA based therapies have shown 
promise in ameliorating chronic renal disease;12-16 and dysregulation of autophagy in the devel-
opment of diabetic nephropathy has been reported.17-21 
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CHRONIC INFLAMMATION IN DIABETIC NEPHROPATHY
 
 Inflammation plays a central role in the progression of 
diabetic kidney disease.11 Molecules integral to the inflammation 
pathways in diabetic kidney disease include transcription factors, 
pro-inflammatory cytokines, chemokines, adhesion molecules, 
Toll-like receptors, adipokines and nuclear receptors, which are 
all novel molecular targets for the treatment of diabetic kidney 
disease.11 Comprehensive genomic profiling in diabetic kidneys 
identified the central role of proinflammatory pathways and the 
identified pathological gene assemblies resulting in renal inflam-
mation, apoptosis and cell cycle arrest in progressive diabetic 
kidney disease.22,23 Inflammasomes are key signaling platforms 
that detect pathogenic microorganisms and sterile stressors, and 
that activate the highly pro-inflammatory cytokines IL-1β and 
IL-18.24 Nlrp3 is one such inflammasome that, once activated, 
Nlrp3 inflammasome activates caspase-1 and mediates the pro-
cessing and release of cytokine IL-1β, amplifies the inflam-
matory response.25 Once activated, Nlrp3 recruits the adapter 
ASC (apoptosis-related speck-like protein containing a caspase 
recruitment domain), which in turn recruits procaspase-1. Pro-
caspase-1 auto catalyzes its cleavage and activation, resulting 
in maturation of the precursor forms of IL-1β and IL-18 into 
active proinflammatory cytokines and initiation of pyroptotic 
cell death.26 The Nlrp3 inflammasome has been implicated in 
the pathogenesis of a wide variety of diseases including renal 
fibrosis. The Nlrp3 inflammasome has previously been reported 
to promote renal inflammation and contribute to chronic kidney 
disease.27 Activation of the Nlrp3-inflammasome has been pre-
viously demonstrated in in vitro studies in endothelial cells and 
podocytes, in patients with diabetes, and in mouse models of 
diabetes.28 It has been well summarized the recent findings: the 
Nlrp3 inflammasome is not limited by the traditional microbial 
stimuli of innate immunity and its connection with autophagy, 
apoptosis, fibrosis, and pro-inflammatory cytokines has broader 
implications for a variety of kidney diseases.29 In a wide spec-
trum of glomerular and tubulointerstitial diseases, the Nlrp3 in-
flammasome is upregulated in both classical immune cells such 
as infiltrating macrophages and resident dendritic cells as well as 
in renal tubular epithelial cells, and even podocytes.29 Inhibition 
of the Nlrp3 inflammasome ameliorates renal injury in a variety 
of animal models.29 The deleterious effect of albuminuria on the 
proximal tubular epithelium and podocytes is, in part, mediated 
by inflammasome activation.29 Therefore, developing strategies 
to target Nlrp3 inflammasome in diabetic nephropathy are war-
ranted. 

miRNAs IN DIABETIC NEPHROPATHY (DN)

 Several miRNAs were reported to participate in the 
pathogenesis of DN, while others showed renal protective effects 
in diabetic nephropathy. To date, some miRNAs are displaying 
therapeutic potential with several in pre-clinical development. 
Thus, targeting miRNAs that are involved in diabetic nephropa-
thy may have a good prospect in the treatment of the disease.30,31 

It was reported that the specific reduction of renal miR-192 

decreases renal fibrosis and improves proteinuria, lending sup-
port for the possibility of an anti-miRNA-based translational 
approach to the treatment of diabetic nephropathy.32 TGF-β1, a 
cytokine playing a central role in the development of diabetic 
nephropathy, reduced expression of the miR-29a/b/c/family, 
which targets collagen gene expression, and increased expres-
sion of ECM proteins.33 miR-200a and miR-141 significantly 
impact on the development and progression of TGFβ-dependent 
EMT and fibrosis in vitro and in vivo.34 It was also reported that 
overexpression of miR-21 in kidney cells enhanced, but knock-
down of miR-21 suppressed, high-glucose-induced production 
of fibrotic and inflammatory markers. Thus inhibition of miR-21 
might be an effective therapy for diabetic nephropathy.35 One 
study has demonstrated that miR-21 overexpression can contrib-
ute to TGF-β1-induced EMT by inhibiting target smad7, and that 
targeting miR-21 may be a better alternative to directly suppress 
TGF-β1-mediated fibrosis in diabetic nephropathy.36 Despite 
there are controversial reports about the role of miR-21 and miR-
192 in the diabetic nephropathy,37,38 miRNA-based therapies still 
hold great promise in ameliorating diabetic nephropathy. To 
date, the major obstacle to the therapeutic use of miRNAs is the 
delivery method. Systemic delivery of miRNAs or antagonistic 
miRs have been widely used, but lead to off-target effects, as 
this methodology may change the function of miRNAs in organs 
other than where pathology is targeted. To tackle this problem, 
kidney targeted delivery of exogenous miRNA is essential in the 
treatment of diabetic nephropathy. 

AUTOPHAGY IN DIABETIC NEPHROPATHY

The development of metabolic diseases, such as type 
2 diabetes and its complications are associated with alterations 
in several nutrient-sensing pathways.17 One such nutrient-sens-
ing pathway involves the mammalian Target of Rapamycin 
(mTOR), AMP-activated protein kinase (AMPK), and oxidized 
NAD- (NAD+-) dependent histone deacetylase (SIRT1), which 
are also recognized as important regulatory factors of autophagy 
under nutrient-depleted conditions.17 Thus alteration of these 
pathways under diabetic conditions may impair the autophagic 
stress response, which may be involved in the development of 
diabetic nephropathy.17 Indeed, treatment with rapamycin, an in-
hibitor of mTORC1, limits the development of diabetic nephrop-
athy induced by Streptozotocin (STZ) in rats, which implicates 
a potential pathogenic role of the mTOR pathway in diabetic 
nephropathy.39 One of the major upstream regulators of mTOR 
is AMP activated protein kinase (AMPK), a critical energy sen-
sor. Many studies have shown that AMPK phosphorylation and 
activity are reduced in the renal cortex of kidneys from STZ-
induced diabetic rats and db/db mice, while AMPK activators, 
resveratrol, metformin and AICAR attenuate renal hypertro-
phy, renal lipid accumulation and urinary albumin excretion.20 

SIRT1 has been shown to inhibit renal cell apoptosis, inflam-
mation and fibrosis, and regulate lipid metabolism, autophagy, 
blood pressure and sodium balance.40 As reviewed,41 autophagy 
can be stimulated by multiple forms of cellular stress includ-
ing growth factor deprivation, hypoxia and Reactive Oxygen 
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Species (ROS), which are common factors implicated in dia-
betic nephropathy. Hence targeting the autophagic pathway to 
activate and restore autophagy activity may be renoprotective. 
Fang, et al. reported high glucose/diabetes impaired autophagy 
in podocytes in vitro and in diabetic mice.18 Tanaka, et al. pres-
ent a compelling case for the need for studies addressing the 
roles of autophagy in diabetic nephropathy as these pathways 
are likely to be eminently suitable targets for novel therapeu-
tic approaches.17 Mitophagy dysfunction also contributes to 
the development of diabetic nephropathy. Mitochondria are the 
main energy-producing organelles in mammalian cells, but they 
also play a central role in cell injury and death signalling. Mito-
chondria are known to be a major intracellular source of ROS.42 
Under pathological conditions such as diabetes, uncoupling of 
oxidative phosphorylation and loss of mitochondrial membrane 
integrity induce excessive ROS production from the respiratory 
chain, while excessive ROS leads to further mitochondrial dys-
function and disruption.43 Oxidative damage and the associated 
mitochondrial dysfunction may result in energy depletion, ac-
cumulation of cytotoxic mediators and cell death. Mitophagy, a 
biological process of autophagic removal of damaged mitochon-
dria, is important as dysfunctional mitochondria may enhance 
cellular oxidative stress, generate apoptotic signals, and induce 
cell death. To date, autophagy is the sole known mechanism for 
mitochondrial turnover. Fragmented mitochondria are engulfed 
by autophogasomes via mitophagy and emerging evidence has 
suggested mitochondrial fragmentation is characteristic of renal 
diseases, including diabetic nephropathy.42 In response to re-
duced cellular ATP, AMPK is activated, which phosphorylates 
ULK1 and ULK2 (two Atg1 homologues) to activate both gen-
eral autophagy and mitophagy. In response to stress, induction 
of mitophagy results in selective clearance of damaged mito-
chondria in cells. Autophagic removal of damaged mitochondria 
requires two steps: induction of general autophagy and priming 
of damaged mitochondria for selective autophagic recognition, 
mediated either by the Pink1-Parkin signalling pathway or the 
mitophagic receptors Nix and Bnip3.44 Dysfunction of mito-
chondria in diabetic kidneys has been well reviewed.42,45 Studies 
from animal models indicate that disturbances in mitochondrial 
homeostasis are central to the pathogenesis of diabetic kidney 
disease.46 Collectively, functionally restoring the autophagy and 
mitophagy in kidney may be an effective strategy to arrest the 
progression of diabetic nephropathy. However, to date there is 
not specific pharmacological activator or inducer of autophagy 
and mitophagy available. 

 In conclusion, the complications of diabetes mellitus, 
such as nephropathy, parallel its rapidly increasing incidence 
with resultant devastating personal and societal impacts. A suc-
cessful continuum between innovative discovery science and 
rigorous translation of research findings is required to limit the 
development, and improve the outcomes of patients with exist-
ing diabetic nephropathy. However, diabetic kidney disease is 
complex and multifactorial and the current therapies are largely 
ineffective, therefore there is increasing urgency to identify nov-
el therapeutic targets that will allow more precise control over 

disease development and progression. In addition to optimal 
control of hyperglycaemia, hypertension and albuminuria, novel 
strategies to target chronic inflammatory signalling pathways, 
restore function of autophagy and mitophagy, and kidney-spe-
cific deliver miRNA in kidney would be future directions for the 
treatment of diabetic nephropathy. 
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