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INTRODUCTION

The essence of  randomization exercise is to bring about compa-
rable treatment groups in a controlled trial. Treatment groups 

are expected to be similar in factors - known or unknown, that 
are prognostic of  outcome of  interest for investigator to draw a 
valid inference on treatment effect.1 However, in practice, balance 
in covariates between groups is often not attained with randomiza-
tion.1,2 The resultant imbalance subtly opens the trial intervention 
to a degree of  misrepresentation of  estimates of  effect.3 The need 

for a correct and more reliable inference on the effect of  interven-
tions under trial has led to efforts to ensure that balance is achieved 
in the distribution of  covariates between treatment groups. Po-
tentially great studies at onset had ended up been declared incon-
clusive owing to issues related to improper design, in particular, 
imbalance in risk factors between treatment groups. For example, 
in their study, Rosenberger et al4 recall an abrupt termination of  
a trial on the role of  erythropoietin in maintaining normal hemo-
globin concentrations in patients with metastatic cancer. The trial 
which was supposed to be a major study involving 139 clinical sites 
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and 939 patients was declared inconclusive owing to issues related 
to covariate handling.

 Dealing with covariate imbalance between treatment 
groups is both design and statistical in nature and needs given con-
sideration when planning a controlled experiment by researchers. 
However, it still appears that the statistical community is unclear 
on how to deal with covariates at the design stage, especially on the 
first line strategy for balancing important prognostic factors at the 
design of  randomized controlled clinical trials (RCTs).4-8 The gen-
eral consensus seems to be that, whichever method is employed 
at the design stage to attempt balance in covariate distribution, an 
adjusted statistical analysis that takes into account important covar-
iate imbalance should take precedence over the unadjusted analy-
sis.1,6,7,9-11 Nonetheless, crude unadjusted analysis by analysis of  var-
iance (ANOVA) is still common and statistically adjusted analysis is 
either model-based analysis of  covariance (ANCOVA) or analysis 
based on change between the pre and post-treatment score. Thus, 
leaving researchers options to choose from at any clinical trial 
scenario. This study aimed at exploring the design and statistical 
methods involved in handling covariate in RCTs with a view to ad-
dressing associated limitations. This will guide researchers’ choice 
and preparations while designing future controlled experiments. 

METHODOLOGY

This article presents known design and statistical methods used in 
dealing with covariates imbalance in randomized controlled trials 
involving a single post treatment assessment of  a continuous out-
come variable. Existing facts on appropriate design and statistical 
methods being used in dealing with covariate imbalance scattered 
in previous literatures were reviewed and synthesized in this paper. 
In addition, a careful appraisal of  mathematical models or equa-
tions of  the standard statistical methods being used at different 
trial scenarios was considered in a way that makes the work easily 
accessible by non-mathematics specialists. The article used illus-
trations and mathematical examples to describe mechanisms of  
covariate handling by these methods for ease of  comprehension. 

State of the art Narrative Synthesis and Model Equations

Baseline imbalance: A particular class of  covariate imbalance be-
tween treatment groups is that which involves baseline difference 
in an outcome variable of  interest. In primary care setting, rand-
omized controlled trials often involve quantifying a numerical out-
come variable at baseline and repeating the same after treatment. 
Measurement of  treatment effect often depends on the observed 
changes from the baseline value within a designated period of  time 
after treatments have been administered. At such time, it is the 
change in mean value of  an outcome variable that is under inves-
tigation. For example, two or more diets may be compared for the 
mean change in body weight they produce,12 two or more treat-
ments for hypertension may be compared for the mean changes 
in diastolic or systolic blood pressure which they produce; two or 
more cancer therapies may be with respect to the mean changes in 
tumour size they produce13 and finally, the effect of  exercise and 
diet on obesity may also be compared in osteoarthritis patients in 
terms of  mean change in body mass index. In all of  these empirical 

examples, the difference in baseline score of  the outcome varia-
ble between treatment groups has a direct influence on treatment 
effect. If  one group has a higher mean score at baseline, then, an 
unfair advantage/disadvantage arise for that group in relation to 
treatment effect compared to the other group. 

Adjusting for baseline imbalance – the analogy: Not adjusting for 
baseline covariate imbalance in an RCT setting could be likened to 
two athletes who prepare to run a 100 m race but start at different 
points on the track. This gives one an unfair advantage over the 
other, and the winner of  the race may not be the truly faster runner 
over 100 m. The level of  unfairness (and implication on the result) 
ties in with the size of  the difference in starting position. Clearly, 
the result or outcome would not be a precise or correct reflection 
of  their true performance because the baseline difference is a fac-
tor that has a direct relationship with the outcome - in this case 
time to finish. So therefore, it is only expected in the interest of  a 
fair result and correct measurement of  performance, that the base-
line difference at the starting point be ‘accounted for’ in the system 
so that the measure of  true performance (time to finish) of  the 
two athletes would be a valid measure. Nobody bothers of  course 
if  the two athletes differ at baseline in some respects that do not 
affect the outcome; for example, colour of  their outfit. 

 In a two parallel-arm RCT setting, the two athletes in the 
above scenario represent the two treatment groups (treated and 
control), while difference in starting point is analogous to baseline 
imbalance as it has an established relationship with the outcome 
variable, and difference in time-to-finish the race represents treat-
ment effect. This analogy of  course, may not completely repre-
sent what transpires in a trial setting, where the average scores of  
various responses (rather than individual responses) within each 
treatment group is compared.

Design Methods

Various methods used at the design stage to attempt balance in 
prognostic factors between treatment groups include: stratification 
and minimization. Also, commonly used is the basic simple rand-
omization; the principle being that between-group inequalities are 
reduced through chance correction with increased sample units. 
This approach is known to yield an unbalanced treatment groups, 
especially when the design is implemented on a study with small 
sample size. The usual practice then is to unduly increase sample 
size by randomizing more patients into treatment groups over and 
above the minimum number required to have a level of  study pow-
er.14 The issue here is that in certain instances when the true effect 
of  the compound being tried has not been completely ascertained 
or when there is an indication that the drug being tested may still 
have some side effects, more patients for example would invariably 
be enrolled either as recipients of  such compound that may turn 
out to be ineffective or in the end found to adversely affects their 
health. When this happens, it begs the question of  when should a 
researcher allow the desire to attain balance in prognostic factors 
to override the ethical responsibility of  patients’ safety and protec-
tion? A possible way out of  this scenarios when they exist would 
be for researchers to accept the outcome of  simple randomization 
based on minimum sample size associated with a reasonable level 
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of  statistical power and account for the between groups imbalance 
in prognostics factors during statistical analysis. 

 Furthermore, with stratified randomization, stratification 
breaks down in trials with small sample size and especially when 
there are many stratification factors to consider for balance. When 
there are large numbers of  covariates with each presenting with 
multiple levels, stratification procedure would require that separate 
allocation lists be prepared at each level of  an identified covariate.15 
Inevitably, such multi-stratification may pose logistical problems, 
making the whole exercise almost impracticable. For example, in a 
trial with 5 prognostic factors at levels 2, 2, 3, 3 and 4 respectively, 
144 separate allocating lists have to be prepared and maintained for 
as long as the study lasts. To avoid such scenarios where stratified 
randomisation would be rather difficult and almost impracticable 
researchers are advised to keep strata few. Previous authors have 
argued that in practice it is rarely possible to stratify for more than 
two prognostics factors, especially in small sample trials.16-18 

 On the other hand, minimization as a design approach 
uses information about patients who are already in the trial to de-
termine treatment assignment for the incoming participants, such 
that differences between groups are minimized.5 Thus, the next 
patient is usually assigned to the treatment group with the lower 
covariate marginal total. As was noted previously,19 various authors 
have submitted that minimization proffers a solution to the limita-
tions of  stratification in balancing for multiple prognostic factors 
in small trials, as the procedure makes treatment groups similar in 
several important features even with small samples.16-18,20 However, 
it has been argued that minimization is open to predictability of  
assignment3,20 and researchers can therefore add a random element 
to the procedure at least to reduce prediction of  assignment.3 An-
other drawback with minimization is the complex computation 
process involved; however, a user-friendly program that manages 
this has been developed.20

Statistical Methods

Statistical methods for handling baseline imbalance for a single 
post-treatment assessment of  a continuous outcome variable are 
change score analysis (CSA), percentage change score and ANCO-
VA. However, the use of  percentage change score for the evalu-
ation of  treatment effect in clinical trial settings has been shown 
not to be statistically efficient.21 Percentage change score analysis 
presents large error variance of  the estimator and as a result has 
poor power to detect a difference in treatment effect when one 
exists. Since percentage change score has been found to be grossly 
inefficient, it would not be taken further in this article. Also, since 
crude analysis by analysis of  variance ANOVA is still popular in 
evaluating treatment effect in trial scenarios irrespective of  the dis-
tribution of  baseline covariates, it is also considered alongside with 
CSA and ANCOVA in this paper.

The Traditional Analysis of Variance

The simplest and perhaps the most common approach to estimat-
ing treatment effect between treatment groups is the crude com-

parison of  post-test scores using statistical tests, such as t-test or 
ANOVA for quantitative outcome variables.

 The underlying model representation for a two-group tri-
al, alluding, is given as: 

Yĳ=β°+λi+εĳ.............................................................(1.0)

i=1,2; j=1…n, or

Yĳ=μ+λi+εĳ ..............................................................(1.1)

 where Yĳ is the posttreatment score for the jth patient in 
the ith group, β° or μ is the common mean value of  the outcome 
variable, λi is the treatment effect in the group and εij is the error 
term. There is clearly no term in the model for ANOVA of  post-
test to accommodate any systematic variation in the groups that is 
related with the outcome as ANCOVA does and this explains the 
larger error term associated with the estimate from ANOVA. 

 Essentially, with respect to ANCOVA, the model extends 
to: 

Yĳ=β°+β1Gĳ+β2Zĳ+εĳ......................................................................(1.2)

 Gĳ is a treatment indicator, β1 is the group difference in Y 
adjusted for differences on Z.

 When β2 is close to 0, then it approximates the ANOVA 
model. It becomes obvious, therefore, that the difference between 
the statistical methods under investigation in this study actually 
lies in the different ways in which each of  them responds to the 
presence of  baseline imbalance. For example, as mentioned earlier, 
with ANOVA of  post-test, β2=0, for ANOVA of  change β2=1, 
and with ANCOVA β2 is computed such that the residual post-test 
variance is minimized, thereby minimizing the standard error of  
the treatment effect estimate.22

 The basis for the statistical procedure of  ANOVA on 
post-test is that baseline scores of  the outcome are comparable 
between the treatment arms by randomization. In other words, the 
statistical procedure assumes that baseline data for the groups to 
be compared are sufficiently similar and thus only the post treat-
ment score is entered into the analysis. 

  In a RCT, let the baseline measurement from the control 
group be represented by random variable ZC and the outcome var-
iable by YC; the corresponding measurements for the intervention 
group are ZT and YT for baseline and outcome respectively;

Thus, 

E(YC)=μ and E(YT)=μ+λ……………………………………(1.3)

and since by randomization the baselines have a common mean 
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value: 

E(ZC)=E(ZT)=μZ.........................................................................(1.4)

E(YT)-E(YC)=λ.............................................................................(1.5)

 From the above, the sample mean of  the outcome in the 
control group YC will have expectation of  μ and in the intervention 
group it will be μ+λ; hence, the difference in means will have ex-
pectation λ as required. This shows that the analysis based on post 
score is unbiased yielding an unbiased estimate of  treatment effect. 
Previous authors,23 have used simulation study to demonstrate the 
fact that both other methods, change score analysis CSA and AN-
COVA, at least when the treatment groups are balanced at baseline 
are expected to yield the same unbiased estimate as ANOVA. 

 However, when treatment groups are not comparable at 
baseline and such that there exists a correlation between baseline 
and outcome scores, then, 

E(ZT)≠E(ZC).................................................................(1.6)

 Direct comparison of  outcomes from the groups be-
comes invalid and the resultant estimate is not unbiased.

Thus the true effect is modelled as, 

 E (YT-YC|ZT, ZC)=λ+ρ (ZT -ZC).....................................(1.7)

 However, since ANOVA model does not have such a 
term that accounts for baseline imbalance, its estimate of  treat-
ment effect will not respond to baseline-outcome correlation, di-
rection and magnitude of  baseline imbalance as in the last equa-
tion. Again, this fact has been variously demonstrated,23,24 their 
simulation studies highlight the non-responsiveness of  ANOVA 
to various degrees of  baseline imbalance and prognostic strength.

Change Score Analysis

If  the analysis is based on ANOVA of  change from baseline, there 
is a conscious effort to bring about balance in baseline data in the 
treatment groups by analysing the absolute difference between the 
baseline and the post-test score in the groups; however, baseline 
scores are not included in the analysis as independent variables.

 Here, analysis concerns (Y-Z)s in the two groups.
 
The underlying model is given as:

Yĳ=β°+β1Gĳ+Zĳ+εĳ..............................................................(1.8)

 Where Zĳ is the baseline value for the jth patient in the 
group. For change score analysis, the regression coefficient for the 
covariate is equal to 1.

 Again, supposing treatment groups are comparable by 

randomization, the expectation will be,

E (YT-ZT)-E(YC-ZC)=(μ+λ-μZ)-(μ-μZ)= λ…………………(1.9)

 and this demonstrates the fact that CSA yields unbiased 
estimate when treatment groups are comparable. 

Var(YT)=Var(YC)=Var(ZT)=(ZC)=σ2…………………(1.10)

 However, the associated variance differs from the vari-
ance of  the unadjusted analysis. Whereas the variance of  the unad-
justed analysis is completely independent of  the baseline outcome 
correlation and if  we assume randomisation makes groups similar, 
then15

 
 (where YT, YC are the outcome variables for both treated 
and control groups and ZT and ZC are the baseline variables for 
both treated and control groups)

but the variance of  the CSA is given as;
 
Var(Y--Z)=Var(Y)+Var(Z)-2cov(Y,Z)=σ2+σ2-2ρσ2=2σ2(1-ρ) 
……………………………… (1.11)

 where ρ is the correlation between Y and Z, assumed to 
be same for both groups.

 The above presentation shows that the analysis of  change 
scores from baseline has an entirely different variance structure 
compared with analysis from post-score comparison, and this has 
implications for the precision of  the effect estimate. For example, 
if  the correlation ρ exceeds 0.5 then a small variance (standard 
error) results and the analysis becomes more powerful than the 
comparison of  post-test outcomes. However, if  the correlation 
is below 0.5, using analysis of  change from baseline (CSA) will 
bring about increased variance - a large standard error and less 
power to detect a real difference between groups. This fact was 
observed,25 who argued that the estimate by analysis of  change 
would not always have a lesser magnitude of  associated variability 
compared with that from an unadjusted analysis - crude compari-
son of  post-treatment scores. He states that precision will be lost 
by change score analysis if  the baseline-outcome correlation is less 
than 0.5, he further argued that only ANCOVA should be used 
if  chance imbalance in treatment groups is to be taken into con-
sideration since ANCOVA takes account of  regression to mean 
whereas CSA does not. Similarly, ANOVA will usually fail to detect 
a bias in an effect estimate since there is no term in the ANOVA 
model that takes account of  the baseline difference in the treat-
ment groups.26 These considerations suggest that various methods 
used for the analysis of  clinical trials can have a very profound 
effect on the estimate of  treatment effect. In fact, under the same 
experimental conditions, ANOVA, CSA and ANCOVA have been 
observed to yield estimates of  effect that are conspicuously differ-
ent in size and precision.22,23,27,28 

 Although the estimate of  effect by CSA may not be 
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markedly affected by the degree of  baseline-outcome correlation, 
its regression coefficients are markedly influenced by both the 
magnitude and direction of  imbalance. When imbalance is in the 
opposite direction to that of  the treatment effect, that is, in this 
case, the control group have lower mean value (i.e. are better) at 
baseline, the absolute value of  the effect estimate by CSA increases 
in relation to the underlying treatment effect. Here, the higher the 
level of  imbalance the wider the distance between the estimated 
effect and zero, and the more likely it is to infer a significant result 
by CSA. The reason for this seeming exaggeration is because the 
control group is treated by change score analysis as if  it enjoys a 
level of  treatment which was never assigned to it, giving rise to 
false positives. On the other hand, if  the imbalance is in the same 
direction as the treatment effect, overall, there is a masking of  the 
treatment effect by change score. This is a consequence of  the way 
change is computed.

 For example, if  ZT, YT represents the baseline and out-
come score for the treatment group and (ZC, YC) represents the 
baseline and outcome for the control group.

 Thus, with change (C) given as;

 C=baseline–outcome, 

for an absolute imbalance of  0.09 in the same direction as an effect 
size of  (-0.2), the arrangement would be (note that reduction im-
plies treatment effect and imbalance in same direction as treatment 
implies the treated group has a better prognosis at baseline):

CSAtreatment effect=(ZT-YT)- (ZC-YC)-0.09-(-0.2)-(0-0)=-0.09+0.2=0.11

Whereas, if  the imbalance of  0.09 is in the opposite direction of  
effect size of  (-0.2), then: 

CSAtreatment effect=0-(-0.2)-(-0.09)-0=0.29+0.09=0.29

These arrangements explain three points; 

1. CSA yields estimates of  effect in the opposite direction to the 
effect (improvement) to be determined. This is the reason for the 
positive sign on the estimate of  effect that is expected to be neg-
ative. 
2. Change score assumes the baseline-outcome correlation to be 
1. Thus, estimates of  effect are the same across all levels of  cor-
relation.
3. Summarily, the computation of  effect by CSA when imbalance 
is in the same direction as treatment effect is such that the mag-
nitude of  this imbalance is subtracted from the absolute value of  
the treatment group’s effect. On the other hand, when imbalance 
is in the opposite direction of  treatment, the computation of  effect 
by CSA is such that the magnitude of  imbalance is added to the 
absolute value of  the treatment group’s effect.

 When imbalance is in the same direction as the treatment 
effect, the estimate from CSA is seen to converge to a zero value, 

indicating no effect. This phenomenon ultimately depends on the 
size of  imbalance; the larger the imbalance the closer to zero is the 
estimate of  effect by CSA. This tapering of  effect size relative to 
size of  imbalance is due to the deduction of  the size of  the imbal-
ance from the treatment effect in the treatment group resulting in 
the loss of  some effect. This then means that though some treat-
ment effects exist, they will not be detected by CSA and thus, false 
negatives will result. Therefore, depending on direction, the larger 
the imbalance the larger the exaggerating or masking effect by CSA 
on its estimate of  effect.

Analysis of Covariance 

Analysis of  covariance is a statistical technique that makes use of  
the distribution of  baseline scores and disparity in this between 
treatment groups to explain the overall treatment effect. ANCOVA 
conspicuously features baseline score as a covariate in its model 
equation and thus accounts for the imbalance during the analy-
sis. Thus, because the model incorporates additional information, 
there is already an expectation of  efficiency in the estimation of  
the effect. This extra or ancillary information accounts for the re-
duction in residual variance by ANCOVA. 

 Similar to other authors on this subject, Van Breukelen22 
presents ANCOVA models as;
 
Yĳ=β°+β1Gĳ+β2Zĳ+εĳ

equivalently as,

Yĳ-β2Zĳ=β°+β1Gĳ+εĳ....................................................(1.12)

 This, though, presents the method as removing all the ef-
fect of  the covariate from the outcome. However, Rutherford29 ar-
gues that outcome variables are not adjusted to completely remove 
the effect of  the covariate but rather, adjustment is done such that 
all patients obtain a covariate score equal to the general covariate 
mean. In other words, ANCOVA uses the general covariate score 
to equalize the covariate distribution in the treatment groups. Thus, 
if  a treatment group has a group mean at baseline that is greater 
than the grand or general covariate mean, the average treatment 
outcome for that group is adjusted downward. On the other hand, 
if  a group has a mean score at baseline that is lower than the grand 
mean, then, the group average treatment outcome will be adjust-
ed upward. The issue here is more of  semantic (language) than 
concept. When ANCOVA equalizes the covariate distribution in 
the treatment groups by using the grand covariate mean, baseline 
imbalance is inevitably removed and thus offers a platform for a 
justifiable comparison of  groups’ treatment effect.

 Thus, Rutherford expresses the ANCOVA model follow-
ing adjustment as: 

Yĳ=β°+β1Gĳ+β2(Zĳ-Z)+εĳ................................................(1.13)

Equivalently as;
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Yĳ-β2(Zĳ-Z)=β°+β1Gĳ+εĳ.................................................(1.14)

 β2, represents the degree of  linear relationship between 
the covariate and the outcome and is empirically determined from 
the data - again, in ordinary language, this represents the portion 
of  the post treatment outcome that is explained by the baseline 
difference. This must be separated from the main effect otherwise 
it biases the estimate of  effect. Z represents the grand covariate 
mean (average of  all the baseline score).

 And following certain algebraic processes, deliberately 
skipped in this paper, the adjusted estimate of  effect λ as by AN-
COVA is given as:
    
λ=(YT-YC)-β(ZT-ZC)..................................................(1.14)

 Only ANCOVA yields an unbiased estimate of  effect 
(with respect to a covariate) when baseline imbalance in the prog-
nostic baseline variable is accounted for.

 This then suggests that the estimate of  treatment effect 
by ANCOVA approximates that of  ANOVA if  the mean baseline 
score for the two groups is similar. Alternatively, both analyses are 
equal if  (ρ=0) irrespective of  the size and direction of  imbalance. 
If, however, the baseline score for the control group is greater 
than the baseline score for the treated group in absolute value, 
then the overall treatment effect by ANCOVA is expected to be 
greater than that of  the ANOVA (also in absolute value). Similarly, 
if  the treatment group is higher in baseline absolute score than 
the control group, then the overall treatment effect by ANCOVA 
will be smaller in absolute score compared to that from ANOVA 
of  post treatment scores. There is directionality in how treatment 
outcome is affected by covariate imbalance between the treatment 
groups. For example, if  the treated group has a lower mean value 
at baseline and reduction in baseline score implies that treatment 
is effective, then the unadjusted treatment effect will fail to iden-
tify the possible exaggeration on the overall treatment effect. The 
overall treatment effect will not reflect the undue advantage of  
a better prognosis that the treated group had at baseline (that is, 
when the effect is in the same direction as the baseline imbalance). 
Conversely, if  a lower mean value is recorded at baseline for the 
control group, then the masking effect on the overall treatment 
effect will still not be identified and the unadjusted analysis will 
yield an overall under-estimate of  effect (analysis being carried out 
as if  baseline prognosis of  both treatment groups is the same). 
Thus, whether imbalance is in the same direction as treatment or 
opposite the crude unadjusted analysis will give the same (biased) 
estimate of  effect. With respect to the direction of  baseline im-
balance, change score analysis will yield an exaggerated treatment 
effect when baseline imbalance is in the opposite direction of  the 
treatment, that is, the control group has a better prognostic status 
(lower baseline score) than the treated group. The overall treat-
ment effect however, will be masked by using change score analysis 
if  the imbalance is in the same direction as treatment.

 This situation may be overcome by ANCOVA account-
ing for the imbalance at baseline, thus reducing the systematic 

variation in the interests of  a less biased and more precise esti-
mate of  treatment effect. ANCOVA does not crudely compare 
the treatment groups’ outcomes, but first adjusts the outcomes in 
relation to the covariate level in the groups. Thus, the procedure of  
covariate adjustment by ANCOVA, as explained29 usually involves 
two stages: 1) ANCOVA determines the co-variation between the 
covariate(s) and the outcome variable, that is, the influence that the 
group imbalance has on the treatment outcome for that group, and 
2) it removes that variance associated with the covariates from the 
outcome variable scores (adjusts in a way that the covariate mean 
value is made equal between the groups). These two stages occur 
prior to determining whether there is difference in outcome. So, 
essentially ANCOVA compares two adjusted outcome values. In 
their study,30 observe that the precision of  the adjusted estimate of  
treatment effect increases as a function of  the correlation between 
the response variable and the covariate. This implies that as cor-
relation between the covariate and outcome variable increases, the 
precision of  the estimate by ANCOVA also increases.23,24 

CONCLUSION

Covariate imbalance is a real phenomenon in randomized con-
trolled trials and its potentially capable of  distorting estimate of  
treatment effect. Design methods at balancing covariates between 
groups are not without their flaws. It remains unethical for re-
searchers to deliberately increase sample size in a controlled ex-
periment in which the true effect of  the compound has not been 
ascertained or when there is an indication that the drug being test-
ed may still have some side effects. In the event either stratified 
randomization or minimization is used, stratification or minimiza-
tion factors are to be treated as covariates during statistical anal-
ysis. The direction and size of  baseline imbalance have profound 
effect on treatment effect estimate by CSA. Only ANCOVA yields 
unbias estimate of  effect and is recommended at all trial scenarios 
in which there are concerns about the distribution of  prognostic 
variables between treatment groups.
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