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ABSTRACT

	 The choroid plexus and cerebrospinal fluid have recently begun to emerge as essen-
tial regulators of neural function. Factors produced by the choroid plexus are released into the 
ventricular environment and thus provide a rich source of extracellular signaling molecules 
throughout the central nervous system. Identified factors in the cerebrospinal fluid include 
growth factors, hormones, proteins, peptides, lipids, glucose, microRNAs (miRNAs), mes-
senger RNA (mRNA), and enzymes. In addition to mediating neural function, these factors 
have the potential to serve as biomarkers of disease states. In this review, we highlight recent 
advances demonstrating the importance of extracellular signaling mechanisms in mediating 
neural function and provide recent evidence for their role in neuropathology.

KEYWORDS: Choroid plexus; Cerebrospinal fluid; Microvesicles; Extracellular communica-
tion; Neuropathology.

ABBREVIATIONS: CSF: Cerebrospinal fluid; siRNA: short-interfering RNA; mRNA: messen-
ger RNA; miRNAs: microRNAs; MVEs: Multivesicle endosomes; IGF2: Insulin-like growth 
factor 2; FGF2: Fibroblast growth factor 2; FXTAS: Fragile X-associated tremor/ataxia syn-
drome; AIDS: Acquired Immune Deficiency Syndrome.

INTRODUCTION

	 Historically, the function of the Cerebrospinal fluid (CSF) was considered to be limit-
ed to maintenance of extracellular ion concentrations and to serve as a protective ‘cushion’ dur-
ing cranial impact. However, recent advances have revealed that the CSF provides a rich source 
of signaling molecules, including growth factors, hormones, proteins, peptides, lipids, glucose, 
microRNAs, mRNA, and enzymes.1-5 Indeed, primary CSF removed from the brain is sufficient 
to maintain cortical explants and cells in culture without the presence of other factors,6 clearly 
demonstrating the extent of micronutrient and growth factor enrichment in this fluid. Several 
initial studies of CSF function had suggested that signaling factors present in the CSF mediate 
satiety, circadian rhythms, and locomotor behavior.7,8 In these early studies, reinstatement of 
feeding behaviour was induced by infusing CSF collected from fasted sheep into the ventricles 
of satiated sheep,9 and similarly, CSF collected from sleep-deprived goats increased the dura-
tion of sleep and decreased locomotor activity when infused into the ventricles of rats.7 These 
findings indicated that substances present in the CSF can exert a significant influence on moti-
vated behaviors. More recently, Pedrazzoli and colleagues established that the peptide orexin 
(a.k.a., hypocretin) is increased in the CSF during sleep deprivation.10 In addition to regulating 
arousal and wakefulness, orexin has been implicated in drug reinforcement, obesity and neuro-
degenerative diseases, such as Parkinson and Alzheimer’s diseases.11-15 As such altered expres-
sion of orexin in the CSF under these physiological conditions could be a mediating factor for 
the sleep-related effects in the earlier study7 and may also have additional multifaceted effects 
on physiological function.
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CHOROID PLEXUS AND CEREBROSPINAL FLUID (CSF)

	 In vivo, production of CSF occurs at several choroid 
plexus sites, including the lateral, third and fourth ventricles, 
thus creating an independent circulatory system for the brain.3 

At each of these sites, the choroid plexus appears to differ in 
some respects in structure, function, and factors produced/re-
leased into the ventricles.16 The epithelial cells that comprise 
the choroid plexus contain extensive basolateral infoldings and 
microvilli, providing an extensive surface area for transport into 
the ventricular fluid. These cuboidal epithelial cells exhibit a po-
larized shape, with differential function ascribed to the apical 
and basolateral membranes.17 The apical membrane interfaces 
with the capillaries of the brain and mainly functions to uptake 
nutrients from the blood, whereas the basolateral membrane 
provides a removal mechanism for toxins and excess substances 
from the CSF, in addition to releasing factors into ventricular 
circulation.17 As such, dysfunction in the transport mechanism of 
the choroid plexus could potentially alter CSF compositions and 
compromise brain health. 

	 The potential for CSF-derived factors to impact neural 
function may be further imparted when one takes into account 
that the total surface area at the choroid plexus-CSF interface is 
roughly the same as the entire blood-brain-barrier.16 As CSF is 
generated, it moves transcellularly and paracellulary among the 
epithelial cells of the choroid plexus to be released into the ven-
tricular space.16 Since the amount of CSF produced allows for 
turnover of approximately four times per day in humans,18 the 
levels of circulating factors has the potential to be continuously 
regulated to influence neuronal function. It has also been pro-
posed that the apical membrane of the choroid plexus expresses 
receptors that function as feedback loops to mediate the further 
release of certain factors into the ventricles,16 and thus the pres-

ence of growth factors, neuropeptides, proteins, cytokines and 
hormones may be regulated in this manner. Indeed, this feature 
of the choroid plexus has been experimentally exploited to alter 
growth factor release; genetically displaying growth factor li-
gands on bacteriophage coats binds the construct to receptors on 
the choroid plexus cell surface, thus altering further release of 
the growth factor into the ventricle.19 In addition to factors pro-
duced by the epithelial cells of the choroid plexus, the presence 
of blood vessels in the choroidal stroma allows for the presence 
of the CSF-blood interface through which factors from the blood 
may enter the central nervous system through leaky endothelial 
junctions.

EXTRACELLULAR TRANSPORT IN THE CSF

	 It has been proposed that the transport of factors from 
the choroid plexus into the ventricular CSF may occur via three 
main routes: (1) transport in the CSF itself as the choroid plexus 
is permeable for smaller molecules, (2) membrane-bound trans-
port mechanisms on the plasma membrane of choroidal epi-
thelial cells, (3) release from the intracellular compartment as 
extracellular vesicles20 (Figure 1). In the prior literature, these 
extracellular vesicles have been referred to as either exosomes 
or microvesicles, although this terminology inconsistently varies 
across fields.21 Van der Pol and colleagues propose that the main 
distinction between the two types of vesicles concerns their size, 
with exosomes being smaller in diameter than microvesicles 
when examined from the same cell. However, this distinction is 
not clearly defined when one considers varying types of cells. For 
instance, exosomes have been most commonly reported to range 
from ~50-100 nm in diameter, and microvesicles from between 
~20-1000 nm in diameter; as can be seen, these classifications 
provide a range of overlap.21 Both types of extracellular vesicles 
can be formed by an outward blebbing of a cell’s plasma mem-

Figure 1: Mechanisms of extracellular transport from the cho-
roid plexus into the cerebrospinal fluid. Factors derived from 
the choroid plexus may be released into the ventricular space: 
(A) as exosomes released from intracellular Multivesicle en-
dosomes (MVEs) through exocytosis, (B) via blebbing of the 
cellular membrane as a microvesicle or exosome, (C) transcel-
lularly and/or paracellulary with release of cerebrospinal fluid, 
or (D) via membrane-bound transport mechanisms located in 
the epithelial plasma membrane.
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brane, but exosomes may be additionally formed as intraluminal 
vesicles within multivesicle endosomes that are then released 
from the cell as the endosome fuses with the plasma membrane. 
For the purposes of this review, we will employ the general ter-
minology of extracellular vesicles to refer to both exosomes and 
microvesicles, and moreover, it should also be noted that this 
classification is distinct from membrane particles or apoptotic 
vesicles.21 Many cell types have been shown to release extra-
cellular vesicles via budding of the cell membrane, including 
epithelial, immune, tumor and stem cells,22,23 and the resulting 
vesicles differ in content and function. Whereas initial investi-
gations assumed extracellular vesicles contained cellular debris, 
growing evidence has established that these compartments are 
enriched with a vast source of signaling molecules that have cru-
cial roles in a number of physiological processes. Release of ex-
tracellular vesicles has been shown to occur via Ca2+-, protein 
kinase C-, or ceramide-dependent mechanisms, and after entry 
into the CSF, the vesicles may immediately breakdown to dump 
contents into the fluid or can travel to a distant site to fuse with 
the membrane of a target cell and transfer genomic material.22-24 
The method of vesicular packaging for extracellular communi-
cation may be preferred for mRNA and miRNAs transport, as 
exposure to circulating RNAses are limited and long-distance 
communication may be achieved via cell-specific targeting mo-
tifs on the vesicle surface. Importantly, several recent reports 
have demonstrated that mRNA from microvesicles can become 
integrated and translated into the proper protein within the target 
cell,23,24 short-interfering RNA (siRNA) packaged into exosomes 
can efficiently silence gene expression,25 and epigenetic chang-
es can be induced in target cells via transfer of miRNAs.22 In 
consideration of these findings, elucidation of the structure and 
function of these packaged compartments could hold promise 
as a novel avenue for therapeutic delivery of preloaded vesicles 
with mRNA, miRNA, siRNA or pharmacological compounds 
into the central nervous system.

RELEVANCE TO NEUROPATHOLOGY

	 With the exception of hydrocephalus, the CSF has not 
traditionally been considered a vital regulatory mechanism of 
and/or implicated in human disease states. However, recent re-
ports are beginning to redefine our understanding of choroid 
plexus and CSF function as they demonstrate the importance 
of factors derived from the CSF in maintaining physiological 
function (Table 1). For instance, growth factors produced by the 

choroid plexus, such as Insulin-like growth factor 2 (IGF2) and 
Fibroblast growth factor 2 (FGF2), have been shown to regulate 
neurogenesis throughout the lifespan.3,6 Further, an elegant study 
from Sawamoto and colleagues recently demonstrated that the 
CSF directly interacts with cilia in the subventricular zone to 
mediate the migration of progenitor cells in the adult brain.26

	 Choroid plexus transport has been implicated as a con-
tributing factor for certain neurodegenerative diseases. For in-
stance, Fragile X-associated tremor/ataxia syndrome (FXTAS) 
is associated with iron dysregulation in mitochondria.27 Interest-
ingly, post-mortem FXTAS subjects exhibit an accumulation of 
iron in the stroma of the choroid plexus and decreased amounts 
of transferrin, ferroportin, and ceruloplasmin, all of which are 
essential to the transport of iron.27 These findings suggest that 
abnormal transport of iron within the choroid plexus may con-
tribute to pathophysiology exhibited by FXTAS subjects. An-
other disorder, cerebral folate transport deficiency, is character-
ized by a lack of B-vitamin within the brain. The polarized cells 
of the choroid plexus have been shown to translocate the folate 
receptor α(FRα) in a unilateral direction from the basolateral to 
the apical compartments, leading to exocytosis into the CSF and 
subsequent integration in the brain parenchyma.28 Thus, abnor-
mal transport of substrates involved in the production of B-vita-
mins may underlie the pathology found in this disorder.

	 To date, dysfunction of the choroid plexus has been 
most studied as a mediating factor of Alzheimer’s disease. Post-
mortem, neural pathology in the Alzheimer’s brain is evidenced 
by a build-up of amyloid-β (Aβ) plaques and intracellular neu-
rofibrillary degeneration of hyperphosphorylated tau (neurofi-
brillary tangles).29,30 Under normal circumstances, the Aβ pro-
tein is produced by the brain and subsequently becomes cleared 
through enzymatic degradation, capillary reabsorption, and/or 
CSF transport through the choroid plexus.29,31 In contrast, patho-
logical accumulation of Aβ plaques and neurofibrillary tangles 
in the disease state leads to dysfunction of neurons and synapses 
throughout the brain, most notably those in brain regions in-
volved in memory and cognitive function, such as the hippo-
campus and cortex.32 As such, recent evidence suggests that the 
choroid plexus and CSF may play a significant role in the pa-
thology of Alzheimer’s disease.1,31,33 Altered clearance of Aβ by 
the CSF with aging results in accumulation of Aβ protein, thus 
promoting the formation of plaques. In late onset Alzheimer’s 
disease, structural abnormalities of the choroid plexus, which in-

Disease
Fragile X-Associated 

Tremor/Ataxia  
Syndrome 

Cerebral Folate  
Transport Deficiency Alzheimer’s Disease Multiple Sclerosis AIDS

Choroid Plexus
Characteristics

Iron accumulation 
in stroma

Failure to transport  
FRα along with 

B-vitamin

Failure to clear 
amyloid-β (Aβ) 

plaques

HLA-DR  
expression

Accumulation
of HIV-1

CSF  
Characteristics Low iron levels Low FRα and B-vitamin 

levels

Accumulation of 
amyloid-β (Aβ) 

protein

Increased
CD4/CD8 ratio

To be further 
investigated

Table 1: Summary of neuropathology associated with abnormal choroid plexus and CSF. 
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clude cellular atrophy, calcification and fibrosis, and thickening 
of the basement membrane,29 are evidenced. These abnormali-
ties are thought to lead to altered synthesis, secretion, clearance 
and transport of factors between the choroid plexus, cerebrospi-
nal fluid and blood.29 Therefore, in patients with Alzheimer’s 
disease, choroidal dysfunction prevents adequate clearing of Aβ 
from the CSF and promotes Aβ accumulation in the brain.29,33 
Another possible role for CSF in the pathogenesis of Alzheim-
er’s disease is through transport of melatonin. The pineal gland 
directly secretes melatonin into the CSF of the third ventricle,34 
or, alternatively, the hormone may enter via leaky endothelial 
cells of blood vessels in the choroid plexus.35 Interestingly, re-
cent findings suggest that the amount of melatonin in the CSF 
is negatively correlated with the status of Alzheimer’s disease 
symptoms.36 Through its actions as an antioxidant it has been 
proposed that melatonin exerts neuroprotective effects by coun-
teracting oxidative damage.36 In the younger brain, evidence 
suggests that melatonin administration can result in anti-amyloid 
and antioxidant effects; however, administration of melatonin 
to the aged brain has been shown to exert a minimal effect on 
pre-existing amyloid deposits.37 Thus, as a therapeutic approach, 
strategies to increase melatonin in the CSF may be of benefit in 
the early stages of Alzheimer’s disease and/or as a preventative 
measure based on familial considerations.38 

	 The choroid plexus also functions as a principal media-
tor of the innate immune response of the central nervous system. 
Peripheral immune molecules interact with receptors located on 
choroid plexus cells to initiate the release of proinflammatory 
molecules, such as interleukins, into the CSF.16 Myeloid pro-
genitors located in the vascularized choroid stroma have also 
been shown to provide a source of brain macrophages.39,40 More-
over, inflammatory processes mediated by the choroid plexus 
have been speculated to contribute to the heightened immune 
response found in multiple sclerosis and encephalitis.41 In ad-
dition, the choroid plexus is a main entry point for viruses to 
infiltrate the brain from the periphery. For instance, the presence 
of HIV-1 in the choroid plexus has been suggested to occur prior 
to the onset of Acquired Immune Deficiency Syndrome (AIDS) 
and immunosuppression,42 and infected CSF or choroid plexus-
derived macrophages can induce toxic effects on neurons in vi-
tro.43 HIV-1 or other viruses may also be capable of altering the 
expression of signaling molecules within the epithelial cells of 
the choroid plexus to permit enhanced entry of the virus into the 
CSF, a possibility which needs to be more systematically inves-
tigated in future studies.

	 Finally, given the close proximity of CSF to brain re-
gions implicated in substance abuse, such as the habenula, hip-
pocampus, and interpeduncular nucleus,44,45 signaling molecules 
in the CSF could potentially regulate the neural processes under-
lying the addictive state. Interestingly, nicotine has been shown 
to mediate the function of the choroid plexus.46,47 Transthyre-
tin, the plasma thyroid hormone transport protein, is produced 
by the choroid plexus and acts to transport thyoxine across the 
blood-brain barrier,48 and nicotine administration has been found 

to increase the synthesis and release of transthyretin into the 
CSF.47 Further, prenatal exposure to nicotine has also been cor-
related with an increased incidence of pathological features of 
the fourth ventricle choroid plexus and premature death.46 How-
ever, further investigations will be critical to ascertain whether 
extracellular factors from the choroid plexus/CSF are important 
mechanisms that mediate the development and maintenance of 
drug dependence. “If established, these findings have the poten-
tial to redefine our understanding of novel signaling mechanisms 
within the brain and in doing so, could provide a foundation for 
more efficacious therapeutic approaches Table 1.”

CONCLUSION

	 Our current understanding of the function of the cho-
roid plexus and CSF has begun to be transformed, and as such, 
the emerging importance of these signaling mechanisms must 
now be recognized as putative essential mediators of brain func-
tion. Extracellular signaling factors have been shown to integrate 
in and modulate function of neurons within the brain and thus, 
have the potential to both maintain normal homeostatic function 
and/or contribute to pathological disease states. Moreover, CSF-
derived factors also hold the potential to serve as biomarkers 
of disease. As the field progresses, the vital function of factors 
derived from the choroid plexus will likely continue to emerge, 
and these advances may then provide a foundation for novel ap-
proaches to treat neuropathology in humans. 
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