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Mini Review 

ABSTRACT

We reviewed the literature relating to hypothalamic inflammation (HI); gliosis in relation 
to high-fat diet (HFD) and that how this could be reversed with various types of therapies. 
We searched PubMed articles with the MeSH terms “hypothalamic inflammation”, “gliosis”, 
“HFD”, “obesity”, and “treatments” used. During HFD intake, we found that the ventromedial 
hypothalamus (VMH) astrocytes uses fatty acids (FA’s) to generate ketone bodies which are 
then exported to neurons where they produce excess  adenosine triphosphate (ATP) and reac-
tive oxygen species (ROS), which overrides CD36 mediated FA sensing and role of astrocyte-
derived ketone bodies in reducing calorie intake in diet resistant but not diet-induced obese 
strains was emphasized. The further role of HAM-RS2-a special starch, resolvins abscisic acid, 
KBH1, unsaturated fatty acid receptor targeting GPR120/GPR40. Hepatic clock genes were 
effective in tackling obesity. We found that in rodents hypothalamic inflammation and glioses 
were found to occur immediately with HFD consumption before any significant weight gain. 
Sensitivity or resistance to diet-induced obesity in rodents also correlates with the presence or 
absence of hypothalamic inflammation and reactive glioses. Further functional interventions 
with the increase or decrease inflammation in neurons and glia alter diet associated weight gain. 
Various human magnetic resonance imaging (MRI) studies have found glioses and disrupted 
connectivity in obese humans. Various factors which can be used to tackle obesity like HAM-
RS2-a special starch, resolvins, abscisic acid, KBH1, unsaturated fatty acid receptors, GPR120 
and GPR40 are some of the explored routes by which these pathways may be explored to 
prevent the further extension of the HFD and one may get newer answers for arresting obesity 
development.

KEY WORDS: Hypothalamic inflammation; Glioses; Obesity; Resolvins; Abscisic acid; KBH1; 
Hepatic clock; Astrocytes; Ketone bodies.

ABBREVIATIONS: HI: Hypothalamic Inflammation; HFD: High Fat Diet; VMH: Ventromedial 
Hypothalamus; FA: Fatty Acids; ATP: Adenosine Triphosphate; ROS: Reactive Oxygen Spe-
cies; BAT: Brown Adipose Tissue; MBH: Mediobasal Hypothalamus; MRI: Magnetic Reso-
nance Imaging; CNS: Central Nervous System; IHC: Immunohistochemistry; GFAP: Glial 
Fibrillary Acidic Protein; DIO: Diet-Induced Obese; HAM-RS2: High amylose maize-resistant 
starch type 2; AUC: Area Under Curve; TDZ: Thiazolidenediones; GIT: Gastrointestinal Tract; 
SCFA: Short Chain Fatty Acids; PYY: Peptide YY; FGF21: Fibroblast Growth Factor; AARE: 
Amino Acid Response Elements; VMN: Ventromedial Nuclei; ARC: Arcuate Nuclei; IKK: In-
hibitor of Kappa Kinase; ER: Endoplasmic Reticulum.
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INTRODUCTION

In our previous articles on trying to elaborate aetiopathogenetic 
factors in obesity we discussed various aspects of factors caus-
ing obesity, including microRNA’s, role of brown adipose tis-
sue (BAT) metabolism, fibroblast growth factor 21 (FBG21) and 
in reviewing nutrient metabolism, special stress on fatty acid 
metabolism was emphasized and how hypothalamic inflamma-
tion (HI) precedes the development of obesity in high fat diet 
(HFD).1-8 We further highlighted the role of gliosis with HI in 
this article along with various ways of considering therapeutic 
action to counter these changes as an effective way of tackling 
obesity.

HYPOTHALAMIC INFLAMMATION (HI) AND GLIOSIS

A growing literature in rodent models suggests that obesity is 
associated with inflammation of and injury to hypothalamic ar-
eas critical to the control of energy balance and glucose imbal-
ance.9-13 Histologically, this response is characterized by gliosis, 
the proliferation, and activation of glial cells induced by the re-
sponse to central nervous system (CNS) injury. Microscopically, 
gliosis means infiltration of microglia and astrocytes and astro-
cytic proliferation including the increased density of astrocyte 
processes on the cell bodies of neurons.

	 Feeding HFD to rodents triggers inflammation and 
gliosis in the arcuate nucleus located in the mediobasal hypo-
thalamus (MBH), even before obesity occurs9,12 and eventually 
reduces proopiomelanocortin cell number.9 Such changes are 
associated with both obesity and impaired glucose homeostasis 
in rodents13-15 and they offer an explanation for obesity-associ-
ated resistance of hypothalamic neurons to humoral signals like 
leptin and insulin.16,17 Even though evidence exists from animal 

studies, the significance of this hypothalamic glioses in humans 
had largely been unknown (Figure 1).18

	 A core concept of current research is that glioses can 
be detected in humans using magnetic resonance imaging (MRI)  
by assessing for increased signal brightness on a T2 weighted 
image.19-21 Clinically the visual identification of increased T2 
signal intensity is used to detect CNS insults like stroke and mul-
tiple sclerosis (MS),20,21 but quantitative techniques can detect 
more subtle alterations in CNS tissue characteristics.11,22 One 
prior retrospective study on humans utilized clinical MRI ex-
amination and found a positive association between body mass 
index (BMI) and ratio on the T2 signal in the MBH as compared 
to the amygdale.9 Thus Schur et al in recent studies utilized a 
quantitative MRI technique to measure T2 relaxation time in the 
MBH, employing a dedicated sequence not typically utilized in 
clinical imaging protocols. Using a similar sequence they found 
longer MBH T2 relaxation times in diet-induced obese (DIO) 
mice compared to chow-fed controls.11,22 Thus using 2 separate 
studies they sought evidence for MBH gliosis in human studies. 
In study 1, an in vivo MRI study it was hypothesized that MBH 
gliosis when present would be associated with obesity and insu-
lin resistance. In study 2, a postmortem study of human brain tis-
sue hypothesized that T2 relaxation time would be related to im-
munohistochemistry (IHC) measures of astrocytes in the MBH.

	 Schur et al examined 67 patients undergoing a fasting 
blood draw and MRI. Cases with radiologic evidence of MBH 
gliosis [n=22] were identified as the upper tertile of left MBH 
T2 relaxation time and were compared to controls [n=23] from 
the lowest tertile. Besides a separate postmortem study brain 
slices [n=10] through the MBH was imaged by MRI and stained 
for glial fibrillary acidic protein (GFAP). In all the participants, 
longer T2 relaxation time in the left MBH was associated with 

Figure 1: Model Depicting the Hypothalamic Response to an HFD in Animals Predisposed to DIO  
A) AgRP and POMC Neurons are Integral Components of Energy Balance Neurocircuitry Located 
in the ARC Nucleus, Situated Adjacent to Third Cerebral Ventricle (3V) Along the Floor of the Hy-
pothalamus. The Activity of these Neurons is Sensitive to Input from Circulating Hormones (e.g., 
Leptin and Insulin) and Nutrients, and it Plays an Important Role to Establish the Defended Level 
of Body Weight. B) Recent Evidence Suggests that During HFD Feeding these Neurons may be 
Injured Via Unknown Mechanisms, and that this Injury Triggers Activation of Local Glial Cell Popu-
lations (Astrocytes and Microglia). This Neuron Injury and Reactive Glioses Can, in Turn, Impair 
Homeostatic Control of Body Fat Stores, Leading to Increased Body Weight.81
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higher BMI (p=0.01). As compared to the control cases, the 
participants had longer T2 relaxation times in the right MBH 
(p<0.05) as well as higher BMI (p=0.05), fasting insulin con-
centrations (p<0.01) and HOMA IR values (p<0.01) adjusted for 
sex and age. Elevations in insulin HOMA IR were also inde-
pendent of BMI. In the postmortem study, GFAP staining in-
tensity was positively associated with MBH T2 relaxation time 
(p<0.05) validating an MRI based method for the detection of 
MBH gliosis in humans. Hence they concluded that these find-
ings links hypothalamic gliosis to insulin resistance in humans 
and suggests that the link is independent of the level of adipos-
ity.23

ASTROCYTES AND HYPOTHALAMIC GLIOSES

Data from recent studies suggests that neuronal inflammation 
may be a downstream event during DIO, with recruitment and 
activation of hypothalamic glial cells being more proximal re-
sponse to HFD exposure.9,11,24-26 This gliosis process involves 
accumulation and multiplication of activated microglia and as-
trocytes in the region of MBH.9,11,25-27 Various studies have im-
plicated microglia in the development of diet-induced inflamma-
tory signals along with metabolic dysfunction,14,28 but a similar 
role for astrocytes is not clear. Buckman demonstrated a modest 
role of astrocytic inflammation to caloric intake on the first day 
of HFD feeding but there was no analysis of susceptibility to 
DIO.29 There are abundant astrocytes throughout the CNS and 
involved in many fundamental processes like synaptic trans-
mission, neurovascular coupling, and blood-brain barrier main-
tenance.30 Additionally, astrocytes participate in CNS immune 
responses, when they take an activated phenotype having raised 
GFAP expression and release of proinflammatory cytokines 
which can enhance neurotoxicity and neurodegenerative disease 
progression.30-32 Hence, astrocytes have the basic requirement 
to affect energy homeostasis regulation in health and disease. 
MBH astrocytes modulate feeding behavior on pharmacologi-
cal activation33,34 and show dynamic responses to circulating 
signals of nutrient availability like insulin and leptin.35-38 Also, 
MBH astrocytes become activated with obesity and HFD feed-
ing in rodents and humans,9,23 which raises the possibility that 
astrocyte inflammation disrupts the hypothalamic regulation of 
energy balance and promotes DIO.

	 The group of Thaler et al developed a mouse model 
with an inducible astrocytic specific deletion of IKKβ with the 
use of tamoxifen. With this approach, they showed that decreas-
ing the astrocytic signaling protects mice from HFD induced HI 
and decreases susceptibility to DIO and glucose tolerance. The 
results highlight the importance of non-neuronal cells in obe-
sity pathogenesis and suggest the possibility of newer target for 
therapy.39

ROLE OF HAM-RS2

Diets high in fibers may lower obesity risk and its morbidities.40,41 
Zero point four percent decreases in body weight is reached by 

consumption of most dietary fibers for 4 weeks.42 The amount of 
weight loss was proportional to the physical and chemical prop-
erties (i.e., solubility, viscosity, and fermentability) of each type 
of fiber. Mechanisms by which weight loss is caused by fibers 
are changes in gut motility, prevention of absorption of nutri-
ents and decrease in the total caloric input, which are associated 
with the physicochemical properties.41,43 Various fibers which 
can be fermented are under scrutiny, as the metabolites obtained 
after fermentation by bacteria in the gastrointestinal tract (GIT) 
may influence body weight. Short-chain fatty acids (SCFA) are 
produced from these fibers in the distal intestine which stimu-
lates the release of GLP1 and peptide YY (PYY), which acts 
in synergy with leptin to induce satiety, which further regulates 
through the CNS.44-46 Although, SCFA’s are produced by fiber 
fermentation there is an inconsistent relation between GLP1 and 
PYY on satiety and food intake in humans. After eating a stan-
dard breakfast in the morning immediately following 3 days of 
consecutive intake of a barley kernel based bread with resistant 
starch, fasting plasma GLP1, and postprandial PYY concentra-
tions were increased in healthy adults.47 But there was no change 
in appetite sensations like in satiety, hunger, desire to eat.47 Also, 
overweight women who had taken an enzyme hydrolyzed arabi-
noxylan from flax at breakfast did not show a postprandial  sub-
jective satiety although there was an improvement of GLP1 and 
PYY, which corresponded to increased subjective satiety follow-
ing maltodextrin intake in healthy humans.48 But there was no 
suppression of energy intake in spite of these changes. In a recent 
trial, there was improvement in PYY which corresponded with 
satiety along with 14% decrease in food intake in healthy adults 
who took 15 g unripe banana flour rich in resident starch for 6 
weeks.49 Why there are differences in satiety peptides and satia-
tion responses relates to fermentability patterns, nature, amount 
and duration of fiber intake along with gut microbe composition 
of individuals? Besides the blood, gut peptide concentrations 
may be very low to be able to cross the blood-brain barrier or the 
individual might be having a hypothalamic resistance which can 
occur from a HFD even in lieu of obesity.50

	 High amylose maize-resistant starch type 2 (HAM-RS2) 
comprises an insoluble, nonviscous fermentable fiber, which has 
been shown to improve glucose homeostasis,51 or those with 
metabolic syndrome.52-54 Yet many of trials of long duration did 
not report or show improvements in blood concentration of gut 
peptides, satiety responses or changes in food intake. The ben-
eficial effects of HAM-RS2’s may be on glucose metabolism by 
increasing SCFA in blood to alter FFA and glycerol release from 
adipocytes and increased fat oxidation55 by affecting bile acid 
metabolism,56 or changing the gut microbiota profile.57 Earlier 
trials reported that the effects of HAM-RS2 on glucose homeo-
stasis in healthy individuals or those with MS.12-15 Thus Maziaiz 
et al tried to determine the impact of daily consumption of 30 g 
HAM-RS2 incorporated into muffins for 6 weeks on glucose ho-
meostasis in normoglycaemic healthy overweight adults at risk 
of developing glycemic abnormalities. They used a randomized 
control, placebo arm, a double-blind design with 18 overweight 
healthy adults consuming either muffins enriched with 30 g 
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HAM-RS2 (n=11) or 0 g HAM-RS2 (control; n=7) daily for 6 
weeks. Both HAM-RS2 and control muffins were similar in to-
tal calories and available carbohydrates. They found at baseline 
total PYY concentrations were significantly higher 120’ follow-
ing the consumption of study muffins in the HAM-RS2 group 
than control group (p=0.043). Within the HAM-RS2, the area 
under curve (AUC) glucose (p=0.028), AUC leptin (p=0.022), 
and postprandial 120’ leptin (p=0.028) decreased independently 
of changes in body composition or overall energy intake at the 
end of 6 weeks. Fasting total PYY increased (p=0.033) in the 
HAM-RS2 group but changes in insulin or total GLP 1 were 
not observed. Mean overall change in subjective satiety score 
did not correlate with mean AUC biomarker changes which sug-
gested that the satiety peptides did not elicit a satiation response 
or change in overall total caloric intake. The metabolic response 
from HAM-RS2 occurred despite the habitual intake of a moder-
ate to HFD (mean range 34.5% to 39.4%) of total calories. Thus, 
they concluded that consuming 30 g HAM-RS2/day x 6 weeks 
can improve glucose homeostasis, lower leptin concentrations 
and increase fasting PYY in healthy overweight adults without 
impacting body composition and may help in the prevention of 
chronic disease. However, between groups, differences in bio-
markers were not seen and warrants future research before mak-
ing specific recommendations.58

ROLE OF FGF21

It was believed that FGF21 was the hormone associated in re-
sponse to nutrient restriction in lieu of increase during fasting, 
starvation and a ketogenic diet.59-62 But, recent data suggested that 
the decreased protein intake is the primary regulator of FGF21 
during those interventions and FGF21 deficient mice failed to 
exhibit the increases in food intake and increases in energy ex-
penditure and reductions in growth observed in wild-type mice 
consuming low protein diet (LPD).63 The mechanisms linking 
reduced protein intake to increased hepatic FGF21 expression 
and secretion are not clear but there is an implication of amino 
acid GCN2 sensor.63,64 GCN phosphorylates eIF2α in response 
to depletion of cellular aminoacids65 which lead to inhibition of 
general protein synthesis while increasing translation of tran-
scription factors such as activation transcription factor 4 (ATF4). 
This links amino acid availability to metabolism specifically in 
the liver.66,67 The FGF21 promoter contains amino acid response 
elements (AARE) and both depletion of amino acid’s and activa-
tion of this Eif2α/ATF4 pathway increases FGF21.64,68-70 Thus, 
it was shown that hepatic Eif2α phosphorylation is induced by 
multiple settings of dietary protein restriction and that low pro-
tein (LP) induces increases in FGF21 and Eif2α phosphorylation 
are blunted in GCN2 deficient mice.63 Since FGF21 is required 
for metabolic and behavioral responses to protein restriction and 
GCN contributes to the increase of FGF21 in this setting, Lae-
gar et al hypothesized that GCN2 deficient mice would fail to 
respond to reduced protein intake and thereby recapitulate this 
phenotype of FGF21 KO mice. They demonstrated that there is a 
persistent and essential role of FGF21 in the metabolic response 
to protein restriction. FGF21 KO mice were fully resistant to 

LP inducing changes in food intake, EE, body weight gain and 
metabolic gene expression for 6 months. GCN2KO mice re-
capitulate phenotype but LP induced effects on FI, EE, body 
weight begin to appear after 14 days on diet. They showed that 
this delayed emergence of LP induced metabolic effects in GCN 
2KO mice coincides with a delayed but progressive increase of 
hepatic FGF21 concentration over time. Thus, they concluded 
that the data indicated that FGF21 is essential for the metabolic 
response to protein restriction but then GCN2 is only transiently 
required for LP induced FGF21.71 

ROLE OF ASTROCYTES AND KETONE BODIES

The mechanisms by which HFD leads to obesity development 
are still poorly understood. Body weight regulation involves 2 
mechanisms namely hunger and satiety. The brains actions re-
garding regulating these are influenced by nutrients, hormones, 
peptides and other related signaling molecules which cross the 
BBB and change the activity of particular metabolic sensing 
neurons which are dispersed in various anatomical sites in the 
brain. The mature human brain weighs only 2-3% of total body 
weight.72 Neurons store very little energy and hence are depen-
dent upon the continuous exogenous supply of glucose as the 
primary metabolic substrate for most of brains energy require-
ments.73,74 Recently, importance of glia, of which mainly astro-
cytes have gained importance for giving this metabolic support 
to neurons.75,76 Since astrocytic foot processes directly impinge 
on brain microvessels they are the first cells which nutrients 
face on entering the brain.77,78 Astrocytes have important meta-
bolic functions including neuronal transmission,79-82 glycogen 
storage and lactate production for neuronal metabolism mainly 
during increased activity of neurons.83,84 In the ventromedial hy-
pothalamus (VMH), ventromedial nuclei (VMN) and arcuate 
nuclei (ARC) astrocytes also produce ketone bodies from free 
fatty acids (FFA).85,86 Although, lactate production, occurs as a 
continuous process84,87 the ketone production from astrocytes 
occurs mainly if blood FA levels increase secondary to dietary 
intake.85,86 Recently, role of local production of ketones by VMH 
astrocytes as regulators of food intake during intake of HFD has 
been highlighted. Also, novel hypothesis by which astrocytes 
can regulate FA turnover in the VMH and mechanism by which 
astrocyte produced ketone override normal neuronal FA sensing 
to regulate feeding is described.

	 Le Foll et al tried to understand mechanisms of long-
term and excessive HFD intake in obesity development. VMH 
is a major site involved in the regulation of glucose and energy 
homeostasis where metabolic sensing neurons integrate meta-
bolic signals from the periphery. FA modulates, VMH neuronal 
activity through the use of FA translocator/CD36 which plays a 
critical role in the regulation of energy and glucose homeostasis. 
During LFD intake FA are oxidized by VMH astrocytes to fuel 
their ongoing metabolic needs. But HFD intake causes VMH 
astrocytes to use FA to generate ketone bodies. Thus they postu-
lated that these astrocyte-derived ketone bodies are exported to 
neurons where they produce excess ATP and ROS, which over-
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rides CD36 mediated FA sensing and acts as a signal to decrease 
short-term food intake. On a HFD, VMH astrocytes produced 
ketones reduced elevated calorie intake to LFD levels after 3 
days in rats genetically predisposed to resist (DR) DIO but not 
leptin resistant DIO rats. This gives a suggestion that while 
VMH ketone production on a HFD can contribute to protection 
from obesity, the inherent leptin resistance overrides this inhibi-
tory action of ketone bodies on food intake. Thus, astrocytes and 
neurons form a tight metabolic unit that is able to monitor circu-
lating nutrients to alter FI and energy homeostasis.88 

ROLE OF RESOLVINS

Infectious agents, trauma or chemical stimulus cause an acute 
inflammation and its prompt resolution is needed to prevent 
chronicity and undesired tissue damage which could lead to an 
unrestrained response to the original harmful stimulus.89 Lipox-
ins,90 resolvins,91,92 and protectins93 are families of endogenously 
produced lipid-derived substances which act in the resolution 
phase of acute inflammatory processes.94 Resolvin D2 (RvD2) is 
one of the members of the resolvin family is produced from the 
ω-3-polyunsaturated fatty acid docosahexaenoic acid (DHA) as 
a result of a series of reactions which get catalyzed by lipoxy-
genases.91 The anti-inflammatory and pro-resolution effects of 
RvD2 are mediated at least in part by the pertussis sensitive G 
protein-coupled receptor (GPCR), GPR18, by signaling mecha-
nism yet to be fully elucidated.95,96 Though most studies have 
explored the role of resolvins in acute inflammatory conditions, 
a recent study had provided evidence that both RvD2 and resol-
vin D1(RvD1) can modulate the chronic inflammatory process 
that takes place in the adipose tissue of obese subjects.97 Also, 
treatment with 17 hydroxy docosahexaenoic acid (17HDHA), 
a precursor of Rv D2, reduced inflammation and corrected IR 
in obese diabetic rodents.98 Obesity is one of the most preva-
lent diseases worldwide. Saturated fatty acids present in the diet 
induce an inflammatory response in the hypothalamus leads to 
dysfunctional regulation of caloric intake and energy expendi-
ture,99-103 which plays an important role in the genesis and per-
petuation of obesity.9,104 Number of pharmacological and genetic 
approaches used to decrease obesity linked H I leads to rever-
sal of the obesity phenotype in animal models9,100-102,105 increase 
the content of ω3 fatty acids can decrease obesity linked HI, 
increase POMC neuron-specific neurogenesis and attenuate the 
obese phenotype.106,107 As ω3 fatty acids are precursors of RvD2, 
Pascal et al examined the activity of this system in the hypothal-
amus of obese rodents. Male Swiss mice were fed either chow or 
a HFD. RvD2 receptor and synthetic enzymes were evaluated by 
real-time PCR and immunofluorescence. RvD2 was determined 
by mass spectrophotometry. Both dietary and pharmacological 
approaches were used to modulate the RvD2 system in the hy-
pothalamus and metabolic consequences were determined. All 
enzymes involved in the synthesis of RvD2 were detected in the 
hypothalamus and were modulated in response to the consump-
tion of dietary saturated fats leads to a reduction of hypothalamic 
RvD2. GPR18, the receptor for RvD2 which was detected in 

POMC and NPY neurons was also modulated by dietary fats.
The substitution of saturated by polyunsaturated fats in the diet 
leads to increased hypothalamic RvD2 which was accompanied 
by decreased body mass and improved glucose tolerance. The 
ICV treatment with docosahexaenoic acid leads to increased 
expression of the RvD2 synthetic enzymes increased expres-
sion of anti-inflammatory cytokines and improved metabolic 
phenotypes. ICV treatment with RvD2 caused decreased adi-
posity, improved glucose tolerance and increased hypothalamic 
expression of anti-inflammatory cytokines. Thus, they conclud-
ed RvD2 is produced in the hypothalamus and its receptor and 
synthetic enzymes are modulated by dietary fats. The improved 
metabolic outcomes of RvD2 make this substance an attractive 
approach to treat obesity.108

ROLE OF PUFA RECEPTORS GPR120 AND GPR40

Intake of large quantities of dietary fats is one of the most im-
portant environmental factors leads to obesity.108-110 Long chain 
saturated fatty acids trigger inflammation through the activation 
of toll-like receptor 4 and the induction of endoplasmic reticu-
lum stress (ER).111-113 The low-intensity inflammation gener-
ated in this context can act both systemically and on selected 
anatomical regions to affect insulin and leptin action,114 insulin 
production,115,116 lipid metabolism117 and a number of other pa-
rameters related to whole body energy homeostasis. Since meta-
bolic inflammation plays a part in the pathogenesis of insulin 
and leptin resistance, it has been hypothesized that means by 
which inflammation is attenuated could be beneficial for obesity, 
T2DM.118-120 Genetic and pharmacological approaches aimed at 
reducing inflammation have produced encouraging outcomes in 
various experimental models.116,119 Recently, in a clinical trial 
salsalate was used to target the inhibitor of kappa kinase (IKK) 
which leads to a marked decrease in glycated hemoglobin lev-
els in patients with T2DM.121 Polyunsaturated fatty acid (PUFA)
receptors GPR120 and GPR40 have been found to be attractive 
targets for the treatment of IR.122-125 Activation of GPR120 by 
PUFA or synthetic ligands engages an atypical signaling sys-
tem which suppresses the metabolic inflammation in obesity and 
T2DM.126 A recent study has reported the beneficial effect of a 
synthetic agonist of GPR120 in improving glucose intolerance 
and hepatic steatosis in an animal model of DIO.127 Additionally, 
a lot of studies have shown the influence of targeting GPR40 
systemically in T2DM.128 A new anti-inflammatory mechanism 
was described by Oh et al regarding the action of PUFA s through 
GPR120. On ligand binding, GPR120 recruits β arrestin-2 leads 
to internalization of the receptor/regulatory protein complex.The 
internalized β arrestin 2 binds to TAB1 and inhibits its binding 
to TAK1 which is a point of convergence for TNFα and TLR4 
signal transduction and its inhibition impairs the progression of 
the signal towards JNK and IKK activation which leads to inhi-
bition of inflammation.123 Beneficial effects of a small molecule 
which acts as a specific agent for GPR120 was also shown by 
Oh’s group.127 Obese mice treated with this molecule showed 
improved glucose tolerance and decreased hepatic steatosis 
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which is accompanied by a decrease of metabolically inflamma-
tory phenotype which shows GPR120 is an attractive potential 
target for treatment of obesity-associated metabolic disorders. A 
beneficial effect of GPR 40 activation has also been seen.125,129,130 
GPR40 is expressed in pancreatic β cells on activation of PUFA’s 
it increases glucose-induced insulin secretion.125 Also, GPR40 is 
expressed in intestinal L&K cells, induces GLP1 and GIP secre-
tion which provides another stimulus for insulin secretion.131 For 
mechanism of action of GPR120 it is shown that the induction 
of Ca2+ mobilization and activation of CREB may play important 
roles in some of the effects of this pathway.132 Hence, the poten-
tial therapeutic usefulness of agonists for GPR40 is considered 
important.128 Therefore, Dragano et al evaluated the expression 
and potential role of hypothalamic GPR120 and GPR 40 as tar-
gets for treatment of obesity. Male Swiss rats (6 weeks old), were 
fed with a high-fat diet (HFD, 60% of kcal from fat) for 4 weeks. 
This was followed by stereotactic surgery to place an indwelling 
cannula into the right lateral ventricle. Intracerebroventricular 
(ICV) cannulated mice were treated twice a day for 6 days with 
2.0 µl saline or GPR40 and GPR120 agonists, GW9508, TUG 
905 (2 µL,10 mM). Food intake and body mass were measured 
during the treatment period. At the end of the experiment, the 
hypothalamus was collected for real-time PCR analysis. It was 
shown that both receptors are expressed in the hypothalamus, 
GPR120 is primarily present in microglia while GPR 40 was ex-
pressed in neurons. Upon ICV treatment GW9508, a nonspecific 
agonist for both receptors, decreased energy efficiency and the 
expression of inflammatory genes in the hypothalamus. Reduc-
ing GPR120 hypothalamic expression using a lentivirus-based 
approach resulted in the loss of the anti-inflammatory effect of 
GW9508 and increased energy efficiency. ICV treatment with 
the GPR120 and GPR40 specific agonists TUG 1197 and TUG 
905 respectively, resulted in milder effects than those produced 
by GW9508. Thus, it was concluded that GPR120 and GPR40 
act in concert in the hypothalamus to reduce energy efficiency 
and regulate the inflammation associated with obesity. The com-
bined activation of both receptors in the hypothalamus results 
in better metabolic outcomes than isolated activation of either 
receptor alone.133

ROLE OF ABSCICIC ACID

The thiazolidinediones (TZD) belong to a family of synthetic 
insulin sensitizer molecules; however, there are adverse effects 
of some of them. Hence, other compounds having similar prop-
erties but fewer side effects are needed. The phytohormone ab-
scisic acid (ABA) was found in mammalian cells over 25 yrs 
back.134 Various studies have proposed it to be a universal signal-
ing molecule.135,136 Structurally, ABA is very similar to TZD’s.
ABA can improve glucose tolerance,137 decreases the levels of 
TNFα and reduce the adipocyte cell size in an in vivo model 
of obesity induced by HFD.138 Further in human and pancreatic 
cell lines (RIN m and INS2 cells), ABA can increase glucose-
stimulated insulin secretion.139 This effect can be suppressed us-
ing pertussis toxin and PKA inhibitors.140 Dietary ABA further 

stimulates granulocyte function and macrophage infiltration in 
the adipose tissue.141 In mammalian cells the lanthionine syn-
thetase C Like protein 2 (LANCL2) shows high homology with 
the ABA receptor in plants, the Arabidopsis GCP2. Blocking the 
expression of endogenous LANCL2 in granulocyte cells can 
stop ABA induction of Ca2+ response while overexpression of 
LANCL2 increases the ABA-mediated effects.142 Because of its 
role in the mediation of ABA effects, LANCL2 has been pro-
posed as therapeutic targets for the treatment of inflammatory 
disease and DM.143

	 Also, ABA shows some molecular structural similari-
ties to retinoic acid (RA). RA has useful effects in cognition, 
improving memory deficits in rodent models of Alzheimer’s 
disease. But both clinical and animal model data show an asso-
ciation between RA administration and the symptoms of depres-
sion.144 ABA given chronically has been shown to be a useful 
antidepressant as shown by increased sucrose intake, increased 
swimming in the forced swim test and decreased expression of 
CRH and RARα mRNA in the rat hypothalamus in control rats 
with no reported side effects.145 Thus Sanchez–Sarua et al tried 
to show if dietary ABA could improve cognitive defects result-
ing from a HFD induced neuroinflammation. HFD increases the 
levels of neuroinflammation markers in the brain146 and may 
be a link between obesity and degenerative disorders via IR.147 
Also HFD has been shown to cause memory loss by increasing 
inflammatory markers in the hippocampus.148 Male Wistar rats 
were fed with standard diet or HFD, with or without ABA (20 
ng/ml) in drinking water for 12 weeks. After 11 weeks of treat-
ment they compared the behavior of 4 groups using 2 memory 
paradigms; the novel object recognition (NOR) and the T maze. 
Also, they measured ABA levels in the blood and cerebellum of 
all 4 groups using HPLC. The microglia proliferation using IHC 
was also analyzed. It was demonstrated that ABA administered 
in drinking water improved glucose tolerance and cognitive per-
formance and decreased the levels of inflammatory markers in 
the hypothalamic areas. Their results confirmed a therapeutic 
potential of this phytohormone in the peripheral metabolic alter-
ations. The data also strongly suggest that the potential benefi-
cial effects of ABA in disorders of neuroinflammatory etiology, 
not shown earlier.149 

HEPATIC CLOCK AND OBESITY

To adapt to the physiology of 24 hour rhythm of day and night 
most species have evolved endogenous circadian clocks in re-
sponse to piles of earth rotation around its axis.150,151 These clocks 
are based on transcriptional-translational feedback loops built 
from a set of clock gene proteins which includes the 2 transcrip-
tional factors circadian locomotor output cycles kaput (CLOCK) 
and brain and muscle ANRT like 1 (BMAL1 or ARNTL) which 
in synergy drive rhythmic expressions of three period and two 
cryptochrome genes through binding to E box enhancer motif 
BMAL 1 and CLOCK regulate other E box controlled genes in 
a tissue-specific manner; thus, translating the circadian clock 
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rhythm into physiologically meaningful signals.152,153 All body 
tissues have clocks which are synchronized by a master pace-
maker located in the hypothalamic SCN154,155 which is controlled 
by the external light rhythm. Peripheral clocks and SCN con-
trolled sleep-wake and food intake rhythms regulate the expres-
sion of many metabolically relevant genes.156 Peripheral clocks 
not only respond to SCN signaling but also get reset by the tim-
ing of food intake. Because of mistimed feeding rhythms which 
occur commonly in modern industrialized societies can promote 
internal clock desynchrony and the development of metabolic 
disorders.157-162 In liver transcriptomic analyses have shown 
more than 3000 rhythm transcripts163 and chromatin immunopre-
cipitation/DNA sequencing experiments showed more than 2000 
DNA binding sites for BMAL1 in the murine liver.164 Circadian 
regulation has been shown for several metabolic processes like 
xenobiotic detoxification,165,166 mitochondrion function and lipid 
and glucose metabolism.163,167,168 Mice with hepatocyte-specific 
abrogation of clock function through deletion of BMAL1 dis-
play impaired glucose homeostasis but normal body weight 
regulation.162 Relatively, mice carrying a dominant negative mu-
tation in the gene encoding the BMAL partner CLOCK∆19 are 
overweight and under HFD conditions develop symptoms of the 
metabolic syndrome.169 This obesogenic phenotype is associated 
with dysregulated feeding rhythms and overeating during the 
normal rest phase. Also mistimed feeding is associated with the 
development of obesity in mice and humans.170-172 In wild-type 
mice restricting access to an HFD to the night-time improves 
clock gene rhythms with normalized weight regulation.170,173 Ap-
petite control and energy expenditure control are centrally con-
trolled and therefore become difficult targets for clinical inter-
vention.174-176 Metabolic feedback signals from the periphery like 
leptin and ghrelin, liver-derived factors such as FGF21,177 and 
ketone bodies,178 reach the brain and modulate neuronal circuits 
to adjust energy metabolism.179 This bottom-up communication 
from peripheral metabolic tissue to control regulatory circuits is 
impaired during obesity.114,180 Thus Meyer–Kovac investigated 
metabolic parameters of wild-type (WT) and CLOCK∆19 mu-
tant mice (MT) under ad libitum and night time-restricted HFD 
feeding. Liver circadian clock function was partially rescued by 
hydrodynamic tail vein delivery of WT clock DNA vectors in 
mutant mice and transcriptional, metabolic, endocrine and be-
havioral rhythms studied. They found night time-restricted feed-
ing restored food intake but not body weight regulation in MT 
mice under HFD, suggesting clock dependent metabolic dysreg-
ulation downstream of circadian appetite control. Liver directed 
clock gene therapy partially restored liver circadian oscillation 
function and transcriptome regulation without affecting cen-
trally controlled circadian behavior. Under HFD, MT mice with 
partially restored liver clock function (MT-LR) showed normal-
ized body weight gain, rescued 24 h food intake rhythms and 
WT like energy expenditure. This was associated with decreased 
night time leptin and daytime ghrelin levels, decreased hepatic 
lipid accumulation and improved glucose tolerance. Transcrip-
tomic analyses revealed the hepatic clock rescue in MT mice 
affecting a range of metabolic pathways. Thus they concluded 
that liver clock gene therapy improves resistance against HFD 
induced metabolic impairments in mice with circadian clock dis-

ruption. Restoring or stabilizing liver clock function might be 
a promising target for therapeutic interventions in obesity and 
metabolic disorders.181

ROLE OF KBH1

KBH1 is a novel herbal mixture which consists of Chinese liz-
ards tail (Saururus chinensis), turmeric (Curcuma longa L.) and 
Chinese sonega (Polygala tenuifolia). Traditionally, in Korea 
and other countries like China, these herbal medicines have 
been used for different anti-inflammatory effects, antioxida-
tive effects, neuroprotective effects and the prevention of hy-
percholesteremia.182-188 Saururus chinensis has been used in folk 
medicine for the treatment of various inflammatory diseases, 
gonorrhea, and edema in Korea189 and exhibits antiasthmatic and 
anti-inflammatory activities.190 Also, previous biological studies 
of S. chinensis have established its effects in metabolic diseases 
including hyperlipidemia, hyperglycemia, neuroprotective and 
hepatoprotective effects.191-195 Curcuma longa has been used in 
traditional medicine in China, Korea, India for ages as the main 
ingredient in prescriptions like Xia oyao-san for mental disor-
ders.196 Also it has been used for the treatment of blood stasis in 
traditional Korean medicine.197 C. longa is the main ingredient 
in Gambigyeong sinhwan, which exerts its antiobesity effects 
through lipid accumulation and adipose PPARα activation198 
and prevents high-fat diet-induced hyperlipidemia as the main 
ingredient in Artemesia iwayomaga.199 Polygala tenifolia has 
been used as a traditional Chinese medicine for the treatment 
of anxiety and dementia200,201 along with the preventive effect 
of this on behavioral disorders and inflammatory diseases.202,203 
Lee et al studied the synergistic effect of the herbal mixture of 
S. chinensis, C. longa and P. tenifolia (KBH1) in obesity and its 
possible molecular mechanism in obesity-induced hepatic ste-
atosis and leptin resistance in the hypothalamus. They used Hep 
G2 cells, primary neuronal cells and an HFD induced obesity rat 
model to determine the effect of KBH1 in vitro and in vivo on 
hepatic steatosis and leptin resistance accompanied by obesity. 
To identify the alleviation effect on lipid accumulation, Hep G2 
cells stimulated by FFA were stained with Oilred O, in addition, 
immunoblotting and qPCR were done to determine the effects 
of KBH1 on the activation of proteins and nuclear enzymes in 
Hep G2 cells and the steatotic liver of HFD induced obesity rats. 
For studying the effect of KBH1 on leptin resistance of hypo-
thalamus and its possible molecular mechanisms they examined 
the effects of KBH1 on the activation of the leptin resistance 
related protein in primary cultured cortical neuron cells and the 
hypothalamus of an HFD induced obesity rat model. In addition, 
they used HPLC analysis to identify the standard compound of 
KBH1. KBH1 besides suppressing lipid deposition in Hep G2 
cells exposed to FFA, downregulated major factors in lipogen-
esis and upregulated major factors in lipolysis. Similarly, in an 
HFD induced obesity model, KBH1 improved hepatic steatosis 
by alleviating the effects on lipogenic genes and kinases. Addi-
tionally, KBH1 markedly improved the leptin-mediated signals 
impaired by obesity or FFA in the obesity model and primary 
cultured cortical neuron cells. In addition, KBH1 was analyzed 
to include 6 standard compounds using HPLG analysis, among 
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these compounds, onjisaponin B, and curcumin potently sup-
pressed the levels of triglycerides. Thus, they concluded that 
KBH1 inhibits alleviating effects by improving hepatic steatosis 
and leptin resistance by upregulating the activation of AMPK 
and suppressing the expression of PPARγ. These findings show 
the potential of KBH1 as a functional food supplement or pre-
ventive agent in the treatment of obesity.204

ROLE OF AUTOPHAGY DYSFUNCTION IN OBESITY 

In animals, chronic intake of HFD causes DIO which leads to 
insulin and leptin resistance in hypothalamic neurons.114,205,206 
Increased inflammation in the hypothalamus was identified to 
mediate the development of obesity and the pathways which 
include IKKB/NFĸB pathway101,207 and upstream inputs such 
as MYD88,208,209 endoplasmic reticulum stress101,207,208 and JNK 
signaling.102,210-212 Chronic inflammatory stimuli can also lead 
to neuronal apoptosis which is important for the anorexigenic 
response.213-214 Recently, neuroimaging studies revealed that 
dysfunctional and neuronal loss were associated with obesity in 
the hypothalamus of humans and rodents.215-217 Besides having 
effects on food intake and energy expenditure HI seems to im-
pair systemic glucose metabolism.Genetic and pharmacological 
modulation of the ER stress and inflammatory pathways in the 
hypothalamus affected liver gluconeogenesis.208,218-219 Inflamma-
tory inhibition of TLR4 or TNFα signaling in the hypothalamus 
impaired improved insulin signal transduction in the liver and 
reduced hepatic glucose production.208 These studies suggest 
that HI plays a role in weight gain and systemic dysfunction 
of glycaemic control. Meng and Cai have shown that neuronal 
autophagy is compromised under conditions of chronic excess 
fatty acids in the diet. In chow feeding mice, the site-specific 
inhibition of ATG7 in the MBH lead to autophagy inhibition, 
impairment of hypothalamic control of energy balance, obesity 
and HI through IĸB activation. In HFD, these metabolic changes 
got increased along with the progression of insulin and leptin 
resistance.220 Normally autophagy is a homeostatic process that 
occurs in all eukaryotic cells and is needed for degrading dam-
aged proteins as well as organelles.It also sequesters the cyto-
plasmic components in the double membrane vesicles known as 
autophagosome.221 These autophagosomes thus fuse with lyso-
somes where the damaged proteins and organelles are degraded 
by lysosomal proteases and recycled.221-223 If this autophagy is 
impaired, it may cause inflammation suggesting that autophagy 
helps in inhibition of inflammatory response220,224,225 Portovedo 
hypothesized that obesity may lead to impairment in hypotha-
lamic autophagy in mice. They examined the hypothalamic 
distribution and content of autophagic proteins in animals with 
obesity induced by 8 or 16 weeks HFD to induced obesity and 
in response to ICV injection of palmitic acid. They showed that 
chronic exposure to an HFD leads to an increased expression of 
inflammatory markers and downregulation of autophagic pro-
teins. In obese mice autophagic induction leads to the down-
regulation of proteins like JNK and Bax which are involved in 
the stress pathways. In neuron cell lines palmitate has a direct 
effect on autophagy even without inflammation activity. Thus, 

understanding the cellular and molecular basis of autophagy is 
important in finding new diagnostic and therapeutic targets for 
obesity.226

CONCLUSIONS

In this review, we have discussed how HI and glioses precede 
the development of obesity and gradually is associated with loss 
of anorexigenic POMC neurons tilting the balance towards high-
er orexigenic AgRP:POMC neuron ratio. During HFD feeding 
these neurons may be injured by an unknown mechanism and 
that this injury triggers activation of local glial cell populations 
(astrocyte and microglia). The neuron injury and reactive glioses 
can, in turn, impair homeostatic control of body fat stores lead-
ing to increased body weight. Further, we discussed the role of 
HAM-RS2, abscisic acid, KBH1, polyunsaturated fatty acid re-
ceptors GPR120 and GPR40 as potential targets for therapeutic 
interventions in preventing this HI and obesity and future targets 
for obesity treatment.
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