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ABSTRACT

Iron (Fe) and copper (Cu) overloads in rats showed a dose and time dependent metal accumulation 
in liver with its associated toxicity. The increased contents of the transition metals markedly 
enhanced the endogenous free-radical mediated processes of phospholipid peroxidation. In 
vivo liver chemiluminescence showed an increased production of 1O2, and a consumption of 
reduced glutathione (GSH), the main intracellular antioxidant. Results fit with a Haber-Weiss 
type molecular mechanism in which Fe or Cu and endogenously produced O2

- and H2O2, yield 
HO• that initiates free-radical mediated phospholipid peroxidation and protein oxidation. 

KEY WORDS: GSH: Reduced glutathione; SOD1: Cu, Zn-superoxide dismutase; GPx: 
Glutathione peroxidase; Nrf2: Nuclear factor erythroid 2-related factor 2.

INTRODUCTION

Iron (Fe) and copper (Cu) are bioelements and vital transition metals whose deficiency or excess 
in the organism are associated with pathologic situations. Both metals are clearly hormetic, 
they are required at low levels for human health (Recommended Daily Intake: 10-15 mg Fe/
day and 1-3 mg Cu/day) but at higher levels (more than 30 mg Fe/day or 8 mg Cu/day) they 
produce toxic effects in liver and brain.1-4 The metal toxicity seems due to their participation 
in the Haber-Weiss redox reaction that produces the highly reactive HO•.5,6 The intracellular 
steady-state concentrations of reactive oxygen species indicate that H2O2 and ROOH are the 
quantitatively predominant species by a factor of 104-1011.7

 Currently, there are two hypotheses for the molecular mechanism of transition metal 
toxicity in mammalian organs. The two hypotheses are not incompatible and it is likely that the 
two processes occur simultaneously. The first one considers that the reduced forms Fe2+ and Cu+ 

catalyze the homolytic scission of the O-O bond in H2O2 and ROOH in a Fenton-like reaction 
to produce HO• and RO• radicals. The second one considers the reaction of Fe3+ and Cu2+ with 
intracellular reduced glutathione (GSH), due to the high affinity of the two metals ions for the 
thiol (-SH) group. This depletes cells of GSH that is equilibrated with essential thiol groups in 
enzymes and regulatory factors. Concerning the first hypothesis, there are two points of view of 
the O-O bond homolysis: a classical one where Fe2+ or Cu+ directly catalyzes the reaction and 
a second one, in which Fe2+ and Cu+ bind to a specific peptide or protein that reacts with H2O2 
generating HO•, that is able to oxidize neighboring amino acids and to produce protein cross-
linking, fragmentation and denaturation.1,2,8 The last mechanism seems to apply to β-amyloid in 
Alzheimer’s disease.9

 The toxicological effects of Fe and Cu overloads were studied in rat liver by a 
kinetic and holistic approach, considering the time (t1/2) and the metal liver content (C50) for 
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half maximal effects. The kinetic approach refers to the central 
role of the t1/2 to define the sequence of events in the liver, 
and the holistic concept considers the whole organ, as in liver 
chemiluminescence and homogenate determinations. 

TOXICITY PROCESSES IN Fe AND Cu OVERLOADS

Sprague Dawley male rats (200-230 g) received i.p. (a) for Fe t1/2 
determination, 30 mg/kg rat of ferrous chloride (FeCl2.4H2O), 
that corresponds to 8.42 mg Fe element/kg; (b) for Fe C50 
determination, 5-60 mg/kg of ferrous chloride, corresponding to 
4.1-49.2 mg/kg of Fe element/kg; (c) for Cu t 1/2 determination, 
10 mg/kg rat of cupric sulfate (CuSO4.5H2O), that corresponds to 
2.54 mg/kg of Cu element/kg; and (d) for Cu C50 determination, 
3-30 mg/kg of cupric sulfate, corresponding to 0.763-7.63 mg/
kg of Cu element. Control rats received a similar volume of 
saline solution.

  The effects of Fe and Cu intoxications in rat liver are 
summarized in Table 1. Both metals produced a situation of 
oxidative stress, that was originally described as an unbalance 
between oxidant production and antioxidant defense.10 The 
concept has been updated and now considers that oxidative 
reactions lead to a disruption of redox signaling and control, and 
to molecular and cellular damage.11 A high content of cellular 
–SH groups is considered essential for cell regulation and 
survival. 

 The description of the metal effects in rat liver given in 
Table 1, is based on the time (t1/2) and on the metal liver content 
(C50) for half maximal effects. The t1/2 describes the kinetics of 
the effect at the used doses. At variance, C50 establishes the effect 
concentration dependence.

 In Fe overload, 90% of the rats survived the observation 
time of 48 h, whereas in Cu overload, 85% of the animals 
survived 24 h and 60% survived 48 h.3 Metal accumulation in 

the liver was dose- and time-dependent.1 The liver content of 
Fe increased 1.6 times and the one of Cu 11-fold after 48 h of 
metal overloads. The Fe and Cu contents observed in rat liver 
are similar to those in patients with haemochromatosis12 or with 
Wilson’s disease, respectively.13 

LIVER OXIDATIVE STRESS AND DAMAGE 

The increased intracellular levels of Fe2+ and Cu1 (Figure 1) 
lead to an enhanced homolytic cleavage of H2O2 yielding HO• 

and initiating phospholipid peroxidation and protein oxidation. 
The spontaneous light emission from in situ mammalian 
organs is a physiological phenomenon and also an assay for 
the determination of the rate of lipid peroxidation, from singlet 
oxygen (1O2) steady states.14 The molecular mechanism of light 
emission includes the Russell’s reaction in which two secondary 
or tertiary peroxyl radicals (ROO•) yield 1O2 or excited carbonyl 
groups (>C=O*) as products and the 1O2 dimol emission. Two 
1O2 molecules upon collision produce a photon at 634 or 703 nm, 
whereas >C=O* yields photons at 460-470 nm.14 

 Increased liver chemiluminescence indicates an 
enhanced rate of free-radical mediated lipid peroxidation. This 
process was also monitored by the determination of the lipid 
peroxidation product TBARS. Similarly, carbonyl groups, >C=O 
were determined as products of protein oxidation. The indicators 
of oxidative reactions and damage (chemiluminescence, 
TBARS, and >C=O) exhibited about similar t1/2, considering the 
experimental error.

 Antioxidants are enzymes or small molecules that 
decrease the level of oxidative chemical species. The small 
molecules able to trap free-radicals and to reduce the extent of 
phospholipid peroxidation and of protein oxidation, are GSH 
(mM range), α-tocopherol and β-carotene (μM range). Other 
kind of antioxidants, more important from a physiological 
consideration, are the enzymes Cu, Zn-superoxide dismutase 

--------------------------Fe--------------------------- --------------------------Cu----------------------------

Property    Effect (%)b t1/2 (h)     C50 (µg Fe/g)c      Change (%) t1/2 (h)     C50 (µg Cu/g)c

Rat survival (-) 10 About 240 140  (-) 40 About 120 120

Metal content (+) 40 4 60 (+) 1000 5 80
Liver chemiluminescence   (+) 200 4 115   (+) 100 4 42

Lipoperoxidation   (+) 200 6.5 130   (+) 100 7 45
Protein oxidation (+) 60 4 116 (+) 40 5.5 50

Hydrophilic  antioxidant (-) 60 5 118 (-) 75 4 42
Hydrophobic antioxidant (-) 50 5 120 (-) 50 5 52

GSH content (-) 58 4 116 (-) 79 4 40
GSH/GSSG ratio (-) 50 2 108 (-) 50 2 30

SOD1 activity (+) 57 8 114   (+) 127 8.5 42
Catalase activity (+) 65 8.5 110 (-) 26 8 44

GPx  activity (-) 39 4.5 120 (-) 22 5 48
aAdapted from references. (1-3): bin % of increased (+) or decreased (-) property compared with control rats; cdetermined by atomic absorption. 

Table 1: Rat Liver Oxidative Stress after Fe and Cu Overloads.a
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(SOD1), catalase, and glutathione peroxidase (GPx). 

 Rat liver antioxidant defenses were affected by Fe 
and Cu overloads. Hydrophilic antioxidants were decreased, 
measured either as a pool, or as GSH concentration. Similarly, 
hydrophobic antioxidants were diminished. The decrease of 
both types of antioxidants indicates antioxidant consumption, 
consistent with an increased rate of liver oxidative free-radical 
reactions. Antioxidant consumption exhibited similar t1/2, 
coincident with the idea that the observed oxidative damage is 
due to a common free-radical mediated mechanism. 

 The two main antioxidant enzymes, SOD and catalase, 
evolved with aerobic life in bacteria.15 Animal biochemistry 
kept this ancestral defense mechanism and SOD1 and catalase 
decreased activities have been associated with pathological 
conditions in mammals and humans.6,16 The adaptive response 
of increased SOD1 and catalase activities in mammalian organs 
was early reported in neonatal rabbit lung,17 and recognized as a 
strategy of antioxidant defense in mammals18 and in humans.19 
In Fe overload, there was an increase in SOD1 and catalase 
activities in response to oxidative stress. In Cu toxicity, a different 
response was observed in the two enzymes: SOD activity 
increased but catalase activity decreased. GPx activity was 
decreased after Fe and Cu overloads, it is likely that increased 
phospholipid peroxidation would include high levels of ROO• 

(peroxyl radical) that binds to the enzyme and inactivates the 
reaction center. 

 The adaptive response involving the described increased 
enzyme activities is likely to be mediated by the nuclear factor 
erythroid 2-related factor 2 (Nrf2) transcription factor that 
appears as responsive to increases in ROOH intracellular levels.5

 The mitochondrial respiration of rat liver mitochondria 
isolated from Cu-overloaded rats showed significant decreases 
in the active ATP-forming state 3, but not in the resting state 4. 
With malate-glutamate as substrate, state 3 respiration was 36% 
diminished, and with succinate, O2 uptake was 25% decreased 
(Table 2).

CONCLUSION

Rats exposed to Fe and Cu overloads develop liver oxidative 
stress in which cells may adapt to the situation or succumb with 
eventual cell death. The adaptation includes the up-regulation of 
SOD1 and catalase synthesis and of enzymes involved in GSH 
conjugation and in GSH synthesis. The apparent purpose of the 
adaptive response is to overcome the oxidative challenge and to 
restore reactive oxygen species to levels compatible with cell 
life. The molecular mechanisms underlying cell adaptation are 
at present not fully understood. However, in recent years some 
transcription factors, as Nrf2, have emerged as master regulators 
of the adaptive response. Decreased liver GSH, consequence 
of Fe and Cu accumulation and the ensuing oxidative stress, 
trigger downstream signaling as an attempt to keep the normal 
composition of membranes and proteins. Given its high 

Figure 1: Scheme of the Biochemical Process in Fe and Cu Liver Toxicity.1

In red, effects of Fe toxicity and in Blue, effects of Cu toxicity. 
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intracellular concentration in liver (5-7 mM), GSH defines the 
cellular redox potential and protects cells against oxidative 
stress. The whole process of metal toxicity is constituted by 
oxidative biochemical processes with t1/2 of 4.6±0.5 h for Fe 
and of 4.9±0.6 h for Cu, that encompass increased free-radical 
mediated oxidations and decreased GSH contents, superimposed 
with the adaptive response of the antioxidant enzymes. 
Altogether, this set of biochemical changes appears to indicate 
an oxidative stress situation where cells are unable to control the 
enhanced production of oxidative species.
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