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Coronary artery disease (CAD) is the most common cause of myocardial injuries induced by prolonged cessation of blood flow 
(ischemia) to cardiac myocytes due to atherosclerosis. For several decades, many clinical trials have been applied to protect hearts 
against ischemia and reperfusion (I/R) injuries, but failed to show significant improvement in the restoration of cardiac function.
By contrast, growing evidence has shown that a non-pharmacological strategy, endurance exercise, provides cardioprotection 
against ischemic myocardial injuries. Despite the prominent cardioprotective benefit; however, the exact molecular and cellular 
protective mechanisms remain an exciting issue. Nonetheless, given that excess production of reactive oxygen species (ROS) is a 
primary mediator of cardiac injuries caused by an I/R insult, improved myocardial antioxidant capacity in response to endurance 
exercise has been suggested to be a key mechanism against I/R injuries, in particular, Therefore, this review will focus the role of 
endurance exercise-induced improvement in myocardial antioxidants in cardioprotection against I/R induced myocardial infarc-
tion.
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INTRODUCTION

The heart is one of the most dynamic organs in our body since 
it constantly pumps the blood through the whole body. To 

continuously fulfil this critical task, cardiac myocytes should re-
ceive suitable amounts of oxygen and nutrients through coronary 
arteries; however, if blood flow to coronary arteries is significantly 
obstructed due to atherosclerosis (a disease of the arteries caused 
by an increase in the deposition of plaques of fatty material on the 
inner walls of arteries), cardiomyocytes undergo ischemia, leading 
to myocardial infarction. Indeed, prolonged blockage of the blood 

flow (chronic ischemia) due to coronary artery diseases (CAD)
causes the massive death of cardiac myocytes.

 The degree of myocardial injuries varies depending upon 
the duration of ischemia, but beyond 20 minutes results in irrevers-
ible myocyte damage,1 but a timely restoration of the obstructed 
blood flow (reperfusion) can ameliorate levels of cell death. Never-
theless, this salvage procedure (i.e., reperfusion by angioplasty) still 
contributes to significant cell death and to formation of fibrosis, 
thus gradually leading to heart failure.2-5 Therefore, ischemia and 
reperfusion (I/R)-induced myocardial cell death is a major risk fac-
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tor for heart failure and become the leading cause of adult death in 
U.S.6,7

 Despite three decades of incessant pharmacological trials 
to mitigate I/R-induced myocardial injuries in the clinical setting, 
currently, satisfactory therapy is still greatly lacking, and thus there 
is an urgent need to devise potent therapeutic strategies. In this re-
gard, endurance exercise has been suggested to remarkably reduce 
I/R-induced myocardial infarction. However, exact mechanisms 
responsible for exercise-induced cardioprotection against an I/R 
insult remain poorly understood and elusive. 
 
 In normal resting mammalian cells, about 0.4~4% of the 
consumed oxygen in the mitochondria is released as reactive oxy-
gen species (ROS).8 However, their levels vastly elevate during an 
I/R episode and contribute to I/R injury, which can lead to myo-
cardial cell death.1,9-14 Given that regular endurance exercise has 
been reported to improve antioxidative capacity, it seems reason-
able to presume that the enhanced antioxidative capacity may be an 
essential element for cardioprotection. Therefore, this review will 
provide basic information about how ROS causes cellular dam-
ages during an I/R insult, describe current molecular mechanisms 
of antioxidative network systems working against ROS, and pres-
ent cardioprotective roles of endurance exercise-induced improve-
ment of antioxidant capacity.

MITOCHONDRIAL ROS AND APOPTOSIS

Free radicals are chemically reactive molecules due to an unpaired 
electron in the outer orbital11 and thus become origins of ROS. For 
example, a superoxide anion is an oxygen-driven radical produced 
as a result of the univalent reduction of molecular oxygen. It's pro-
duction leads to the formation of many other ROS including hy-
drogen peroxide, H2O2; hydroxyl radical, ∙OH; and peroxynitrite, 
ONOO-.11,15,16 It has been reported that mitochondrion in mam-
malian cells is the main locus that generates superoxide anions due 
to an electron leaked from complex I and III of mitochondrial 
electron transport chain.17-21 Since superoxide radicals are charged 
molecules, they have less chance to cross the mitochondrial mem-
branes; thus, if not scavenged, superoxide radicals cause mitochon-
drial membrane lipid peroxidation and protein oxidation in elec-
tron transport chain complexes as well as Krebs cycle enzymes,22 
resulting in mitochondrial dysfunction.23-25 Moreover, recent evi-
dence has shown that oxidative stress is responsible for opening 
mitochondrial permeability transition pore (mPTP),26,27 leading to 
myocardial injuries and cell death.27,28

 Mitochondrial has been known to mediate cell death 
upon oxidative damages via a series of apoptotic signaling cascades 
by releasing cytochrome C and/or apoptosis inducing factor (AIF) 
from mitochondria. This triggers caspase-dependent and/or -in-
dependent apoptosis, respectively.29,30 For this reason, protection 
of mitochondria against oxidative stress via mitochondrial anti-
oxidants has been suggested to be a key countermeasure against 
I/R-induced myocardial injury owing to the massive production of 
ROS during I/R.

 Two major antioxidative defence systems in mitochon-

dria exist to work as a unit to eliminate oxidative stress: 1) manga-
nese superoxide dismutase (MnSOD) and 2) glutathione peroxi-
dase (GPX), catalase (CAT), and peroxiredoxin III (PRX III).

Removal of Superoxide Radicals

MnSOD detoxifies superoxide radicals by converting them into 
hydrogen peroxide (H2O2) and oxygen: 

2O2
.ˉ+ 2H++ MnSOD →H2O2 + O2

 Thus, in mammalian cells, MnSOD has been considered 
as an essential antioxidant enzyme responsible for cardioprotec-
tion.31 Indeed, multilayers of evidence have demonstrated that 
partial downregulation or complete knockdown of MnSOD accel-
erates myocardial injuries under oxidative stress,32,33 while upregu-
lation of MnSOD minimizes infarct size of the heart undergoing 
an I/R insult.34

Removal of H2O2

Relatively stable H2O2 produced from the process of dismutation 
of superoxide radicals by MnSOD in the mitochondria is consid-
ered to be potentially harmful because it can becomea highly re-
active hydroxyl radical (∙OH) in the presence of Fe2+ via Fenton 
reaction:

 Fe+2 + H2O2→ Fe+3 + ∙OH + OH-

 In fact, H2O2compared to charged superoxide radicals 
can be freely diffused across membranes and become a source of 
hydroxyl radicals. Recent evidence indicates that H2O2 not only 
causes a collapse of mitochondrial membrane potential by opening 
MPTP but also induces protein oxidation of sarcoplasmic reticu-
lum Ca2+ ATPase, potentially leading to mitochondrial Ca2+ over-
load. Therefore, this oxidant can also initiate apoptosis. Due to this 
deleterious effect, endogenous antioxidants (e.g., GPX, CAT, and 
PRX III) specifically targeting H2O2 in mitochondria exist.

GPX, CAT, and PRX III

As shown in Figure 1, GPX, CAT, and PRX III function as a unit 
to remove H2O2. Briefly, GPX is thiol-containing peroxidase and 
uses glutathione (GSH) as a reducing equivalent to reduce H2O2 to 
form oxidized glutathione (GSSG) and water. Similarly, a heme-
containing homotetrametic enzyme, CAT, converts H2O2 to water 
and oxygen. A recent study has shown that mitochondria-targeted 
CAT in a mouse experimental model significantly increases life 
span,35 whereas mutation of this enzyme exhibits more susceptibil-
ity to oxidative damage.36 Recently, PRX III have received special 
attention because this enzyme exerts potent antioxidative roles in 
the cells, ranging from degradation of H2O2 and repair of mem-
brane lipid to modification of apoptosis induction.37 Indeed, it has 
been reported that PRXIII is the most abundant and efficient an-
tioxidant enzyme targeting H2O2 in mitochondria.38 PRX III neu-
tralizes H2O2 produced in mitochondria through their peroxidase 
activity with the use of electrons provided by thioredoxin II (TRX 
II) that is reduced by NADPH via thioredoxin reductase (TRX R 
II).39-41
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EXERCISE-INDUCED CARDIOPROTECTION AGAINST AN 
I/R INSULT: ROLE OF MNSOD

Endurance exercise has been demonstrated to reduce myocar-
dial injury against I/R injuries including contractile function and 
myocardial infarction size.42-46 While several cardioprotective 
mechanisms induced by endurance exercise have been proposed 
(eg, reduced calcium overload, heat shock proteins, and increased 
ATP-dependent potassium channels), an increase in antioxidant 
capacity has been recognized as a key mechanism. Indeed, given 
that I/R contribute to massive ROS production, the notion that 
enhanced antioxidative capacity in response to exercise is associ-
ated with cardioprotection is not surprising. Growing evidence has 
shown that increased activities of manganese MnSOD are linked 
to exercise-induced cardioprotection.24,42,43,47,48 This crucial role of 
MnSOD in cardioprotection was strongly supported by a recent 
study in which knockdown of exercise-induced MnSOD expres-
sion via in vivo administration of an antisense oligodeoxyribonucle-
otide against MnSOD significantly diminished exercise-mediated 
cardioprotection.47 Despite this clear association of increased Mn-
SOD with cardioprotection, mechanisms of how endurance exer-
cise increases MnSOD has not been clearly elucidated yet. 

 Nonetheless, according to recent research, a transcrip-
tion factor, cAMP-responsive element binding protein (CREB), is 
linked to regulate MnSOD expression.49,50 Also, another transcrip-
tion factor, tumor necrosis factor-α (TNF-α), has been reported 
to induce MnSOD gene expression and plays an important role in 
cardioprotective role against an IR insult, as the cardioprotection 
was abolished when TNF-α was absent.51 This observation appears 
to indicate that a TNF-α signaling may be a potential mechanism 
of exercise-induced MnSOD upregulation; however, given that 
endurance exercise rather reduces inflammatory cytokines includ-
ing TNF-α,52,53 this signaling pathway is less likely to be the case. 
Another potential mechanism involved in enhancing MnSOD ac-
tivities is the nuclear erythroid-2 like factor-2 (NRF2), known as a 

master transcription regulator of various antioxidant enzymes.54 In 
support of this notion, recent studies have reported that NRF2-
mediated heme oxygenase-1 (HO-1) upregulation in the heart en-
hances MnSOD activities via carbon monoxide production upon 
HO-1 potentiation.55 Currently, whether this notion is applicable 
to endurance, exercise-induced cardioprotection remain enigmatic 
because long-term endurance exercise impairs NRF2 signaling, 
resulting in cardiac dysfunction,56 whereas moderate intensity en-
durance exercise improves cardiac oxidative stress via upregulation 
of NRF2 expression.57 Therefore, further mechanistic studies are 
needed to determine the functional role of NRF2 in MnSOD regu-
lation and involvement in exercise-induced cardioprotection.

EXERCISE-INDUCED CARDIOPROTECTION AGAINST AN 
I/R INSULT: ROLE OF GPX, CAT, AND PRX III

As previously described, removal of superoxide radicals by Mn-
SOD results in the production of another form of ROS, H2O2. 
Thus, increased MnSOD expression or activities in response to 
endurance exercise can cause a potential source of oxidative stress 
in mitochondria. Regarding this notion, recent studies have shown 
that endurance exercise upregulates GPX in the mitochondria in 
parallel with reduced H2O2 production and mitochondrial lipid 
peroxidation.24 Interestingly, Starnes et al did not observe an in-
crease in GPX, but showed that CAT was increased in response 
to short-term endurance exercise.58 Consistent with this study, a 
study by Moran et al also showed that 12 weeks of endurance train-
ing does not modulate GPX in rat’s myocardium.59 Currently, it 
remains unknown why GPX responds differently to exercise train-
ing; but a study led by Ji group seems to provide a potential answer. 
His research group showed that modulation of antioxidant levels 
in response to endurance exercise appears to be tissue-specific, 
with highly oxidative tissues such as soleus and heart showing no 
significant alteration and rather reduction in some cases.60

 It is surprising that despite a potent antioxidative role 

Figure 1. Simplistic Overview of the Interaction of Antioxidant Enzyme Network in Mitochondria: A super 
oxide radical (O2

.-) produced from mitochondria is converted into hydrogen peroxide (H2O2), which is then detoxified by 
several antioxidant enzymes such as glutathione peroxidase (GPX), catalase (CAT), and peroxiredoxin III (PRX III), resulting 
in the conversion of H2O2into water molecules. Importantly, GPX and PRX III utilize reducing molecules such as glutathione 
and reduced thioredoxin (TRX red), respectively to neutralize H2O2. After donating thiol groups, oxidized glutathione (GSSG) 
and thioredoxin (TRX ox) become reduced by glutathione reductase (GR) and thioredoxin reductase (TRX R), respectively, 
using NADPH as a reducing equivalent
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of PRX III against oxidative stress, very little studies have been 
conducted. Currently, only one study is available, demonstrating 
that PRX III levels were elevated in mitochondria by endurance 
exercise,61 suggesting that this phenotypic change may be linked to 
cardiac protection against oxidative stress.

SUMMARY

It is well known that oxidative stress during an I/R episode con-
tributes to myocardial infarction, and thus improved antioxidative 
capacity has been suggested to reduce myocardial infarction. Simi-
larly, a non-pharmacological intervention, endurance exercise, has 
been reported to improve endogenous antioxidant capacity, lead-
ing to cardioprotection against an I/R insult. Given that mitochon-
drial are major sources of ROS production and become a potent 
initiator of cell death under stressed conditions such as an I/R 
insult, mitochondria-specific antioxidant enzymes have emerged 
as a potential strategy that reduces oxidative stress and infarction. 
In mitochondria, MnSOD converts superoxide into weak oxidant 
H2O2, which is then detoxified by GPX or CAT, or PRX III, re-
sulting in the production of oxygen and water. Both classical and 
recent studies have shown that endurance exercise-induced im-
provement in MnSOD, GPX, CAT, and PRX III is associated with 
cardioprotection against I/R injuries by reducing both apoptosis 
and necrosis (Figure 2). However, how regular endurance exercise 
upregulates these antioxidant enzymes has not been clearly eluci-
dated yet although some transcription factors (e.g., CREB, TNF-α, 
and NRF2) has been indicated as plausible candidates. Therefore, 
identification of clear signaling pathways of exercise-induced an-
tioxidant upregulation will provide key insight into developing a 
pharmacological therapeutic strategy against myocardial infarction. 
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