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 The Topic “Toxin-Induced Parkinson’s Disease Models’ includes articles on experi-
mental neurotoxic chemicals models of Parkinson’s Disease (PD). The model toxicants with 
differing chemical structures recapitulate PD owning to their action on multiple molecular tar-
gets. These reports have provided with deeper understanding on the neurodegenerative events 
associated with the progressive disease. Several toxin-based models are developed in an attempt 
to experimentally mimic dopaminergic neurodegeneration, oxidative stress, cytoplasmic inclu-
sions, proteasome dysfunction, altered protein trafficking, calcium overload and potentially 
mapping the events in the PD pathology. This spectrum includes research reports and reviews 
that discuss neurotoxin-based models (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 
6-OHDA, rotenone, paraquat) that have greatly contributed to unravel the key mechanisms of 
neuronal cell death. In relevance to PD in humans, toxin-induced PD models have provided for 
observable behavioral deficits (motor and non-motor features). Moreover, the etiologic specific 
insights gained into the disease with the chemical modelling of PD has aided to screen/develop 
novel therapies.

 PD is the most common progressive neurodegenerative condition affecting 1-2% of 
elderly population.1 PD is characterized clinically by cardinal features involving resting tremor, 
rigidity and bradykinesia with loss of postural stability. The sporadic form of the PD involves 
progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) 
of the nigrostriatal system. Mutations in alpha-synuclein, parkin, ubiquitin carboxy-terminal 
hydrolase L-1 (UCHL1) and DJ-1 genes have been linked to familial forms of the disease.2-4 

Importantly, the PD pathology is characterized by the presence of fibrillary Lewy bodies and 
neurites, the intracytoplasmic proteinaceous inclusions containing neurofilament proteins. 
The occurrence of late-onset idiopathic form of the disease is likely due to gene mutation and 
environmental influence.5 Nevertheless, there is a growing concern with the environmental 
factors particularly the chemicals to either induce PD or increase the disease risk.

 Exposure to agricultural chemicals has been proposed to be a potential risk factor 
for the PD among the human population associated with farming, rural living and drinking 
contaminated well water.6,7 Epidemiological data obtained from case reports, mortality reports, 
case-control studies relates to the possible link between chemical exposures and PD.8-10 Also, 
in vivo, the chemical models possess certain limitations involving lack of specificity in their 
actions, systemic toxicity and failure to exactly model the non-motor features. Indeed, several 
reports suggest lack of an association between chemical exposure and PD development.11-14 As 
will be discussed in the ensuing section, these findings are attributed to several factors involving 
exposure route, period (acute/chronic), and the relationship of chemical-induced neurotoxicity 
leading to development of disease. MPTP is highly lipophilic compound that is converted into 
active metabolite 1-methyl-4-phenylpyridinium (MPP+) by monoamine oxidase B to be taken 
up by the dopamine transporters (DATs). The metabolite translocates into mitochondrial matrix, 
inhibits complex I of the respiratory chain leading to adenosine triphosphate (ATP) depletion 
with increased formation of superoxide anion radical (•O2-).

15 Dysregulation in intracellular 
calcium homeostasis has also been proposed for neuronal degeneration with MPTP.16 
Additionally, MPTP treated has displayed enhanced neuronal oxidative and mitochondrial 
pathology.17 MPTP intoxication has shown to enhance extracellular glutamate contributing 
to reactive oxygen species (ROS) release18 leading to enhanced excitatory neurotransmitter 
activity in the basal ganglia. Importantly, MPTP promotes protein misfolding modifying 
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chaperones such as alpha-synuclein by forming covalent adducts further leading to accumulation of aggregated proteins (Lewy 
bodies).19

 6-hydroxydopamine (6-OHDA) continues to be a valuable PD model in rats19 and is a structural analogue of biogenic 
amines-dopamine and noradrenaline. 6-OHDA injection into the ventrolateral caudate-putamen closely mimics human PD pathology 
through oxidative stress mechanism leading to nigrostriatal degeneration, inflammatory response and metabolic changes.20,21 The 
molecule accumulates to generate reactive species to attack biological macromolecules by generating oxidative metabolites (reactive 
species and quinones) without Lewy body formation.22 Several behavioral tests have been used to characterize the unilateral lesion 
associated with 6-OHDA injection.23 The unilateral lesion has provided for quantitative assessment and behavioral deficits in 
rodents.24

 Rotenone, a naturally occurring cytotoxic pesticide is highly lipophilic and potent inhibitor of mitochondrial complex 
I. Rotenone exposure reproduces many characteristic features of PD including nigrostriatal dopaminergic degeneration and 
formation of alpha-synuclein filamentous inclusions.25 The pesticide treatment has shown to induce mitochondrial dysfunction with 
development of postural instability characteristic of PD.26,27 Several studies in animals with rotenone exposure have implicated 
parkinsonism neurobehavioral abnormalities including locomotor defects,28 depressive-like syndrome29 and cognitive deficits30. 
Moreover, accumulating evidence points towards neuroprotective therapeutic intervention targeting vulnerable pathways involved 
in degenerative events following rotenone exposure.31,32

 Paraquat (N,N-dimethyl-4-4-bipiridinium) is a member of the widely used bipyridyl herbicide with structural similarity 
to MPP+ induces nigral dopaminergic neuronal loss and behavioral phenotype changes associated with human PD. The herbicide 
toxicity appears to be mediated through monocationic radical formation by NADPH:cytochrome P-450 reductase and NADH: 
ubiquinone oxidoreductase reduction of paraquat.33 Reports indicate that paraquat crosses blood-brain barrier through the neutral 
amino acid transporter.34 It is suggested that the pathological hallmarks of PD involving selective vulnerability of dopaminergic 
degeneration, a characteristic feature of paraquat neurotoxicity.35 Studies have shown that paraquat-induced cell  loss  results  from  
Bak-dependent  pathway  involving  mitochondrial  membrane permeabilization and subsequent activation of caspase-3. Apart from 
motor deficits, patients with PD often display neuropsychiatric pathology39,40 and studies on animal behaviors related to affective-like 
state has been assessed with exposure to paraquat. Given the involvement of oxidative stress and dopaminergic cell loss in paraquat 
toxicity, various phytochemicals and other compounds have been studied to abrogate neurotoxic response.41-45 Maneb (manganese 
ethylene-bis-dithiocarbamate), is a contact fungicide that synergistically interacts with paraquat to markedly reduce locomotor 
function and increased striatal terminals and nigral neuronal damage.46 Such synergistic interactions have been considered for the 
role in PD etiology and are of interest since they reflect actual human exposures.47

 Although, the toxic models reproducing PD neuropathological features have tremendously influenced our understanding 
of the disease, it is important to elucidate the causal relationship between toxin exposure and PD (that warrants quantitative 
data) since existence of methodological issues in establishing pesticide role in disease was suggested earlier.48 However, pre-
clinically the etiologic-specific neurotoxin PD models continue to investigate disease pathology owing to their merits to produce 
neuropathological features. Moreover, novel imaging modalities have provided better understanding of changes in neuronal activity 
responsible for behavioral outcome by neurotoxin challenge.49 These advances have greatly aided in delineating mechanisms of PD 
neurodegeneration and potential therapeutics that may be applied. Further, environmental importance and likelihood of population 
exposure to toxicants must be taken into account when considering their use as model toxicants for PD.
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